Residual Stress Mapping in Welds Using the Contour Method

Author(s):  
Ying Zhang ◽  
S. Pratihar ◽  
Michael E. Fitzpatrick ◽  
Lyndon Edwards
2018 ◽  
Vol 7 (4) ◽  
pp. 20170110 ◽  
Author(s):  
Florian Vollert ◽  
Jens Gibmeier ◽  
Joana Rebelo-Kornmeier ◽  
Jonny Dixneit ◽  
Thilo Pirling

2005 ◽  
Vol 490-491 ◽  
pp. 294-299 ◽  
Author(s):  
Ying Zhang ◽  
S. Pratihar ◽  
Michael E. Fitzpatrick ◽  
Lyndon Edwards

The contour method, a newly-invented sectioning technique for residual stress measurement, has the potential to measure the cross-sectional residual stress profile of a weld in a simple and time-efficient manner. In this paper we demonstrate the capability of the contour method to measure cross-sectional residual stress profiles, which are compared with neutron diffraction measurements and show excellent agreement. The results provide useful information for safetycritical design of welded components and optimization of welding parameters, and also illustrate the potential of the contour technique as a powerful tool for residual stress evaluation.


Author(s):  
Mitchell D. Olson ◽  
Adrian T. DeWald ◽  
Michael R. Hill ◽  
Steven L. McCracken

This paper describes a sequence of residual stress measurements made to determine a two-dimensional map of biaxial residual stress (weld direction and transverse to the weld direction) in a mockup with a partial arc excavation and weld repair (EWR), as well as three additional maps of one component of residual stress. The mockup joins two dissimilar metal plates (SA-508 low alloy steel and Type 316L stainless steel) with a nickel alloy weld metal (Alloy 82/182). A partial groove is then excavated and filled in with SCC resistant Alloy 52M weld metal. The mockup was fabricated to investigate the effectiveness of the EWR mitigation methodology being investigated through the development of ASME Code Case N-847 to address stress corrosion cracking problems in reactor coolant system butt welds. The biaxial stress map is determined using a newly developed technique called primary slice removal (PSR) mapping, which uses both contour method and slitting measurements. In this case, the technique requires measuring the longitudinal stress along a plane and the long transverse stress remaining in a slice removed adjacent to that plane. This paper includes descriptions of the experiments and data analysis. The measured residual stresses follow expected trends and compare favorably to the results of computational weld residual stress modeling.


Author(s):  
C. R. Chighizola ◽  
M. R. Hill

Abstract Background Prior work described an approach for mapping the two-dimensional spatial distribution of biaxial residual stress in plate-like samples, the approach combining multiple slitting measurements with elastic stress analysis. Objective  This paper extends the prior work by applying a new variation of the slitting method that uses measurements of cut mouth opening displacement (CMOD) rather than back-face strain (BFS).  Methods First, CMOD slitting is validated using an experiment where: BFS and CMOD are measured simultaneously on the same sample during incremental slitting; two residual stress profiles are computed, one from the BFS data and a second from the CMOD data; and the two residual stress profiles are compared. Following validation, multiple adjacent CMOD slitting measurements are used to construct two-dimensional maps of residual stress in plates cut from quenched aluminum. Results The two residual stress versus depth profiles, each computed separately from BFS or CMOD data, are in agreement, with compression near the plate boundaries (-150 MPa) and tension near the plate center (100 MPa); differences between the two stress profiles have a maximum of 25 MPa and a RMS of 7.2 MPa. Repeated biaxial residual stress mapping measurements show the CMOD technique is repeatable, and complementary contour method measurements show the mappings are valid. Aspects of CMOD and BFS deformations during slitting are also described and show they are generally complementary but that CMOD slitting is favorable in narrow samples.


Author(s):  
Michael R. Hill ◽  
Mitchell D. Olson

This paper describes a sequence of residual stress measurements made to determine a two-dimensional map of biaxial residual stress in a dissimilar metal welded nozzle typical of a nuclear pressurized water reactor (PWR). The present experimental work follows on the numerical analysis reported earlier, in PVP2012-78885. The measurement subject is a cylindrical nozzle, removed from a PWR pressure vessel, having a nickel alloy weld joining a stainless steel safe end to a low-alloy steel vessel. Biaxial residual stress was determined in a series of experimental steps using strain gage measurements, the contour method, and slitting. Confirmatory measurements were also performed (including digital image correlation and neutron diffraction). The paper includes descriptions of the experimental steps, data reduction, and residual stress results, along with a comparison between measurements and output from a weld simulation. The measured hoop stress in the weld region is tensile near the OD (300 MPa) and compressive near the ID (−400 MPa); the measured axial stress is tensile near the OD (150 MPa) and compressive near the ID (−150 MPa).


2021 ◽  
Vol 165 ◽  
pp. 107861
Author(s):  
Hao Jiang ◽  
Junjun Liu ◽  
Zhenkun Lei ◽  
Ruixiang Bai ◽  
Zhenfei Guo ◽  
...  

2018 ◽  
Vol 115 (4) ◽  
pp. 413
Author(s):  
Nida Naveed

This study, on a micro-scale, of the WEDM cut surfaces of specimens to which the contour method of residual stress measurement is being applied provides detailed information about the effects of the cutting process on the surface quality. This is defined by a combination of several parameters: variation in surface contour profile, sub-surface damage and surface texture. Measurements were taken at the start, the middle and at the end of the cut. This study shows that during WEDM cutting, a thin layer, extending to a depth of a few micrometres below the surface of the cut, is transformed. This layer is known as the recast layer. Using controlled-depth etching and X-ray diffraction, it is shown that this induces an additional tensile residual stress, parallel to the plane of the cut surface. The WEDM cut surface and sub-surface characteristics are also shown to vary along the length of the cut. Moreover, these micro-scale changes were compared with macro-scale residual stress results and provides an indication of the point at which the changes occurred by cutting process can be significantly relative to the macro-scale residual stress in a specimen.


2014 ◽  
Vol 996 ◽  
pp. 349-354 ◽  
Author(s):  
Jeferson Araujo de Oliveira ◽  
Michael E. Fitzpatrick ◽  
Jan Kowal

In this work we evaluate the application of the contour method to fatigue and fracture surfaces. Residual stress measurements were made on quenched and aged AA2124-SiCp composite using neutron diffraction, the contour method with wire EDM, and the contour method on a fatigue crack surface including brittle failure. The contour method successfully measured residual stresses from a wire electro-discharge cut surface, but the fracture method results suggest that residual stress information is lost due to plasticity during fatigue crack growth.


2000 ◽  
Vol 123 (2) ◽  
pp. 162-168 ◽  
Author(s):  
M. B. Prime

A powerful new method for residual stress measurement is presented. A part is cut in two, and the contour, or profile, of the resulting new surface is measured to determine the displacements caused by release of the residual stresses. Analytically, for example using a finite element model, the opposite of the measured contour is applied to the surface as a displacement boundary condition. By Bueckner’s superposition principle, this calculation gives the original residual stresses normal to the plane of the cut. This “contour method” is more powerful than other relaxation methods because it can determine an arbitrary cross-sectional area map of residual stress, yet more simple because the stresses can be determined directly from the data without a tedious inversion technique. The new method is verified with a numerical simulation, then experimentally validated on a steel beam with a known residual stress profile.


Sign in / Sign up

Export Citation Format

Share Document