Impact Damage and Strength Reduction Behavior of Honeycomb Sandwich Structure Subjected to Low Velocity Impact

Author(s):  
Ki Weon Kang ◽  
Jung Kyu Kim ◽  
Heung Seob Kim
2006 ◽  
Vol 306-308 ◽  
pp. 279-284
Author(s):  
Ki Weon Kang ◽  
Jung Kyu Kim ◽  
Heung Seob Kim

The goals of the paper are to identify the impact damage and strength reduction behavior of sandwich structure, composed of carbon/epoxy laminates skin and Nomex core with two kinds of thickness (10 and 20mm). For these, low velocity impact tests were conducted using the instrumented impact-testing machine and damages are inspected by SAM. And then, subsequent static tests are conducted under flexural loading to identify the strength reduction behavior of the impacted sandwich structures. The impact damages are mainly delamination in carbon/epoxy skin and their behavior is mostly independent of core thickness. Also, their energy absorbing behavior is identified through calculating the energy absorbed by impact damage. Finally, the strength reduction behavior is evaluated through Caprino’s model, which was proposed on the unidirectional laminates.


2006 ◽  
Vol 20 (25n27) ◽  
pp. 4384-4389 ◽  
Author(s):  
KI-WEON KANG ◽  
JUNG-KYU KIM ◽  
SEONG-KYUN CHEONG ◽  
HEUNG-SEOB KIM

The goals are to identify the strength reduction behavior and its statistical properties of sandwich structure subjected to low velocity impact. For these, the impact tests were performed using the impact tester and the damages are inspected by SAM. And then, subsequent static tests are conducted under flexural loading for the impacted structures. The strength reduction behavior is evaluated via the residual strength prediction model. Also, a statistical model is developed to identify the fluctuation of residual strength. The model well describes the distribution of residual strength.


2020 ◽  
Vol 10 (20) ◽  
pp. 7262
Author(s):  
Murat Yavuz Solmaz ◽  
Tolga Topkaya

This study experimentally investigated the flexural fatigue behaviors of honeycomb sandwich composites subjected to low velocity impact damage by considering the type and thickness of the face sheet material, the cell size and the core height parameters. Carbon-fiber reinforced composite and the aluminum alloy was used as the face sheet material. First, the static strength of undamaged and damaged specimens was determined by three-point bending loads. Secondly, the fatigue behaviors of the damaged and undamaged specimens were determined. Low velocity impact damage decreased the flexural strength and fatigue lives but increased the damping ratio for all specimens. Maximum damping ratio values were observed on specimens with a aluminum face sheet.


2017 ◽  
Vol 20 (8) ◽  
pp. 1009-1027 ◽  
Author(s):  
Zonghong Xie ◽  
Wei Zhao ◽  
Xinnian Wang ◽  
Jiutao Hang ◽  
Xishan Yue ◽  
...  

Titanium honeycomb sandwich structures are gradually used in newly developed aircrafts in China. In this study, low-velocity impact tests on the titanium honeycomb sandwich structures were carried out to obtain the impact dynamic response and investigate the typical impact damage modes and parameters including the depths and diameters of the facesheet indentation and the core crushing region. The test results showed that the maximum contact force, the diameter and depth of the indentation had strong positive correlations to the impact energy. Numerical analysis was also conducted to study the low-velocity impact behaviour of the titanium honeycomb sandwich structures by using parametric finite element models that contained all the geometric and the structural details of the titanium honeycomb cores. The numerical results successfully captured the typical low-velocity impact damage modes of the titanium sandwich structures, similar to those observed in the tests. The predicted impact dynamic response also agreed very well with the test data. By using the validated finite element models, a parameter sensitivity study on the effects of the structural parameters on the low-velocity impact damage behaviour of the titanium sandwich structures was conducted. The parametric analysis results showed that the impactor diameter, the facesheet thickness and the core cell wall thickness had positive effect on the maximum contact force, and negative effect on the indentation depth, while the height of the honeycomb core had positive effect on the contact force, but little influence on the indentation depth.


2021 ◽  
pp. 109963622199818
Author(s):  
RS Jayaram ◽  
VA Nagarajan ◽  
KP Vinod Kumar

Hybridization of sandwich panels and their different components have drawn huge attention due to the significant improvement in their attributes. Hybrid core of ‘Polyester Pin-reinforced Foam filled Honeycomb Sandwich panels’ (PFHS) were fabricated and compared with unreinforced ‘Foam filled Honeycomb Sandwich panels’ (FHS) in terms of low velocity impact and Compression After Impact (CAI) performance. The impact damage area was calculated by employing MATLAB image processing technique. Incorporating through thickness pins for connecting faces and core is an effectual way to improve interfacial bonding, specific bending stiffness and also imparts out of plane properties for sandwich panels. The low velocity impact tests performed on the sandwich panels revealed that the polyester pin reinforcement in foam filled honeycomb sandwich panel improved the load bearing capacity, total absorbed energy and reduced the impact damage area significantly. In CAI test, debond, wrinkling of face sheet, and buckling of face sheet and core are the major modes of failure. The addition of the pins enhanced the compressive strength for all the impact energy levels.


Sign in / Sign up

Export Citation Format

Share Document