Impact Damage and Strength Reduction Behavior of Honeycomb Sandwich Structure Subjected to Low Velocity Impact

2006 ◽  
Vol 306-308 ◽  
pp. 279-284
Author(s):  
Ki Weon Kang ◽  
Jung Kyu Kim ◽  
Heung Seob Kim

The goals of the paper are to identify the impact damage and strength reduction behavior of sandwich structure, composed of carbon/epoxy laminates skin and Nomex core with two kinds of thickness (10 and 20mm). For these, low velocity impact tests were conducted using the instrumented impact-testing machine and damages are inspected by SAM. And then, subsequent static tests are conducted under flexural loading to identify the strength reduction behavior of the impacted sandwich structures. The impact damages are mainly delamination in carbon/epoxy skin and their behavior is mostly independent of core thickness. Also, their energy absorbing behavior is identified through calculating the energy absorbed by impact damage. Finally, the strength reduction behavior is evaluated through Caprino’s model, which was proposed on the unidirectional laminates.

2006 ◽  
Vol 20 (25n27) ◽  
pp. 4384-4389 ◽  
Author(s):  
KI-WEON KANG ◽  
JUNG-KYU KIM ◽  
SEONG-KYUN CHEONG ◽  
HEUNG-SEOB KIM

The goals are to identify the strength reduction behavior and its statistical properties of sandwich structure subjected to low velocity impact. For these, the impact tests were performed using the impact tester and the damages are inspected by SAM. And then, subsequent static tests are conducted under flexural loading for the impacted structures. The strength reduction behavior is evaluated via the residual strength prediction model. Also, a statistical model is developed to identify the fluctuation of residual strength. The model well describes the distribution of residual strength.


2006 ◽  
Vol 326-328 ◽  
pp. 1793-1796
Author(s):  
Ki Weon Kang ◽  
Seung Yong Yang ◽  
J.H. Kim ◽  
Jung Kyu Kim ◽  
Heung Seob Kim ◽  
...  

This paper deals with the damage behavior of glass/epoxy composite laminates subjected to low-velocity impact at various temperatures. For this goal, the impact tests were performed by using an instrumented impact-testing machine at three temperatures: +20°C, -10°C and -40°C. And the resultant damages were inspected through the scanning acoustic microscope (SAM). Also, based on the impact force history and the damage configuration of the laminates, the impact resistance parameters were employed to evaluate damage resistance of glass/epoxy laminates. As results, it was found that the temperature changes affect the damage resistance capacity of glass/epoxy laminates.


2018 ◽  
Vol 11 (4) ◽  
pp. 46-52
Author(s):  
Aidel Kadum Jassim Al-shamary

In this study, the effect of low velocity impact  response of Kevlar/carbon hybrid composite has been investigated. Then the impacted specimens were subjected to compression and buckling tests at room temperature experimentally. The height, width and thickness of the specimens are 150, 100 and 2.1 mm, respectively. Impact tests have been performed under different impact energy levels by using low velocity impact testing machine. Compression and buckling tests were conducted by Shimadzu testing machine. According to obtained results, the damage increases by increasing the impact energy level in the subjected specimens to impact test.  Compression strength value is higher about 3  times than buckling strength value.


2010 ◽  
Vol 24 (15n16) ◽  
pp. 2657-2663 ◽  
Author(s):  
KI-WEON KANG ◽  
HEUNG-SEOB KIM ◽  
TAE-JIN CHUNG ◽  
SEUNG-KEE KOH

This paper aims to evaluate the effect of temperature on impact damage resistance of glass/epoxy laminates. A series of impact tests were performed using an instrumented impact-testing machine at temperature ranging from -40°C to +80°C. The resulting impact damage was measured using back light method. The impact resistance parameters were employed to understand the damage resistance. It was observed that temperature has a little effect on the impact responses of composite laminates. The damage resistance of glass/epoxy laminates is somewhat deteriorated at two opposite extremes of the studied temperature range and this behavior is likely due to the property change of glass/epoxy laminates under extreme temperatures


2018 ◽  
Vol 52 (25) ◽  
pp. 3491-3508 ◽  
Author(s):  
Forrest Baber ◽  
Vipul Ranatunga ◽  
Ibrahim Guven

In this study, a new approach for predicting damage and specific failure modes in laminated fiber reinforced composites is presented. The new method is based on the peridynamic theory and models individual plies, and represents fiber and matrix materials in each ply explicitly. These features enable analysis of laminates with arbitrary fiber orientation in a convenient manner. Additionally, a new failure mode identification algorithm has been developed and implemented. Instead of the conventional peridynamic damage parameter, the new algorithm works with individual broken bonds, which makes identification of different failure modes including matrix cracking, fiber breakage, and delamination straight-forward and unambiguous. The new peridynamic approach is demonstrated by considering the low-velocity impact damage on composite laminates with and without translaminar reinforcements. The translaminar reinforcement technique considered in this study is z-pinning; two different geometric configurations of z-pins are explored. The impact testing and the post-impact nondestructive evaluations with ultrasonic c-scans are performed at the Air Force Research Laboratory to characterize the delaminations. The impact tests on different samples are simulated using the current peridynamic approach. The predicted impact damage failure modes are compared against the experimental measurements. The new approach is shown to capture low-velocity impact damage both quantitatively and qualitatively.


2007 ◽  
Vol 345-346 ◽  
pp. 1529-1532 ◽  
Author(s):  
Ki Weon Kang ◽  
H.J. Kim ◽  
J.H. Kim ◽  
Heung Seob Kim ◽  
Yong Su Kim ◽  
...  

This paper deals with the damage resistance of glass/epoxy laminates with embedded shape memory alloy (SMA) subjected to low-velocity impact at various temperatures. For this goal, the impact tests were performed by using an instrumented impact-testing machine at three temperatures: +20°C, -10°C and -40°C. And the resultant damages were inspected through the scanning acoustic microscope (SAM). Also, based on the impact force history and the damage configuration, the impact resistance parameters were employed to evaluate damage resistance of laminates with embedded SMA wires. As results, it was found that the damage resistance of glass/epoxy laminates with embedded SMA wires is dependent on the service temperature.


1999 ◽  
Author(s):  
Uday K. Vaidya ◽  
Mohan V. Kamath ◽  
Mahesh V. Hosur ◽  
Anwarul Haque ◽  
Shaik Jeelani

Abstract In the current work, sandwich composite structures with innovative constructions referred to as Z-pins, or truss core pins are investigated, in conjunction with traditional honeycomb and foam core sandwich constructions, such that they exhibit enhanced transverse stiffness, high damage resistance and furthermore, damage tolerance to impact. While the investigations pertaining to low velocity impact have appeared recently in Vaidya et al. 1999, the current paper deals with compression-after-impact studies conducted to evaluate the residual properties of sandwich composites “with” and “without” reinforced foam cores. The resulting sandwich composites have been investigated for their low velocity (< 5 m/sec) impact loading response using instrumented impact testing at energy levels ranging from 5 J to 50 J impact energy. The transverse stiffness of the cores and their composites has also been evaluated through static compression studies. Compression-after-impact studies were then performed on the sandwich composites with traditional and pin-reinforcement cores. Supporting vibration studies have been conducted to assess the changes in stiffness of the samples as a result of the impact damage. The focus of this paper is on the compression-after-impact (CAI) response and vibration studies with accompanying discussion pertaining to the low velocity impact.


2016 ◽  
Vol 827 ◽  
pp. 145-148 ◽  
Author(s):  
Sneha Samal ◽  
David Reichmann ◽  
Iva Petrikova ◽  
Bohdana Marvalova

Low velocity impact strength of the fabric reinforced geocomposite has investigated in this article. Various fabrics such as carbon and E-glass were considered for reinforcement in geopolymer matrix. The primary two parameters such as low velocity, impact damage modes are explained on the E-glass and carbon based fabric geocomposite. The onset mode of damage to failure mode is examined through C-scan analysis. The quality of the composite is observed using c-scan with acoustic vibration mode of sensor before and after impact test. Then the effect of fabric and matrix on the impact behaviour is discussed. Residual strength of the composite is measured to determine post impact behaviour. It has been observed that resistance properties of E-glass reinforced composite is better than carbon fabric reinforced composite.


Sign in / Sign up

Export Citation Format

Share Document