Relation between Cantabro Loss and Surface Abrasion Resistance of Fly Ash Roller Compacted Concrete (FRCC)

2016 ◽  
Vol 16 ◽  
pp. 52-68 ◽  
Author(s):  
S. Krishna Rao ◽  
P. Sravana ◽  
T. Chandrasekhar Rao

In this paper an attempt has been made to know the effect of Fly Ash (FA) on Roller Compacted Concrete (RCC) properties like strength and abrasion resistance. The Cement was partially replaced by three kinds of replacements (20%, 40% and 60%) of class F Fly Ash. The RCC mixtures were designed to have a 28 days flexural strength of 5.0 N/mm2. The specimens were subjected to two types of abrasion resistance tests such as Contabro test and surface abrasion resistance test with rotating cutter besides Compressive and Flexural strength tests. Experimental results shows that the Cantabro loss and surface abrasion loss were increased with increase in Fly Ash content in relation with the strength of roller compacted concrete pavement at the ages from 7days to 180days compared to control mix concrete. Equations were established based on compressive strength and flexural strength which were influenced by cement replacement by Fly Ash and developed to predict abrasion resistance of FRCC at any age. Also a relationship was established between Cantabro loss and surface abrasion loss of FRCC regardless of age and percent replacement of Fly Ash.

Author(s):  
Solomon Debbarma ◽  
Surender Singh ◽  
G. D. Ransinchung R.N.

The present study evaluates the potential and suitability of different fractions of reclaimed asphalt pavement (RAP) for roller compacted concrete pavement (RCCP) mixes. Natural coarse and fine aggregates were replaced, partially and in combination, by coarse RAP, fine RAP, and combined RAP for preparation of RCCP mixes. The considered properties to determine the optimum RAP fraction and its proportion for RCCP were fresh density and water demand, compressive strength, flexural strength, split tensile strength, porosity, water absorption, abrasion resistance, and performance in aggressive environments of chloride- and sulfate-rich ions. It was observed that inclusions of all the fractions of RAP considered could reduce the strength related properties of RCCP mixes significantly at all curing ages. However, fine RAP mixes were found to exhibit better strength properties than coarse RAP and combined RAP mixes. It was also observed that none of the RAP mixes could achieve the recommended compressive strength criterion of 27.6 MPa, however, they exhibited enough flexural strength to replace a fraction of conventional aggregates, individually or in combination, for construction using RCCP. In fact, 50% coarse and 50% fine RAP mixes had higher flexural strength than the target laboratory mean strength of 4.3 MPa. Similarly, these mixes were found to have sufficient abrasion resistance and could be included in RCCP (surface course) to be constructed in areas having high concentrations of chloride and sulfate ions. Additionally, the results also indicated that higher proportions of fine RAP may be suggested for RCCP mixes to be laid in sulfatic environments.


2014 ◽  
Vol 597 ◽  
pp. 320-323 ◽  
Author(s):  
De Hong Wang ◽  
Yan Zhong Ju ◽  
Wen Zhong Zheng

Mechanical properties of reactive powder concrete (RPC) containing fly ash were investigated under different curing regimes (standard and steam curing) in this study. The experimental results indicate that, flexural strength of RPC increased considerably after steam curing, compared to the standard curing. Steam curing had no significant effect on compressive strength of RPC. Increasing the fly ash content improved the flexural strength of RPC under all curing regimes considerably. The compressive strength reached a maximum (103.8MPa) when the fly to ash and cement ratio is 0.3.


Sign in / Sign up

Export Citation Format

Share Document