Stress Characteristics of Non-Axisymmetric Synthetic Abdominal Aortic Aneurysm Models: How Real are They?

2004 ◽  
Vol 1-2 ◽  
pp. 245-250 ◽  
Author(s):  
Arindam Chaudhuri ◽  
Leslie E. Ansdell ◽  
Mohan Adiseshiah ◽  
Anthony J. Grass

Abdominal aortic aneurysms (AAAs) are abnormal aortic dilatations that are prone to rupture, with fatal consequences. Synthetic aneurysm models are being used to assess in vivo stress characteristics of aneurysms before and after surgical reinforcement. This study seeks to assess peak wall stress characteristics in a latex life- like model. A life-like non-axisymmetric latex AAA model, constructed from a 3D computed tomographic reconstruction of a real AAA, was incorporated into a pulsatile flow unit (PFU) to simulate the cardiac output. Strain gauges were placed at the neck (n= 2 x 3), inflection point (the junction of neck and sac, n=4 x 3) and maximum anteroposterior diameter (n=4 x 3). The arterial pressure settings used were 130/90 and 140/100mmHg, termed the low and high setting respectively. Strain readings were obtained at 10Hz over 30 seconds using a data logger. Stress was derived using the relationship between stress and Young’s modulus (E= 5.151872 Nmm-2). Peak wall stresses were statistically analysed over the two pressure settings using ANOVA in Minitab 13. The highest stresses were noted at the inflection point and not at the maximum diameter, as might have been expected. Peak inflection point stress anteriorly measured 394.69 (SD 218.1) x10-4 N/cm2 in the low setting, increasing to 715.39(SD 230.32) in the high setting (p<0.001). Posteriorly, peak wall stress measured as high as 373.61(SD207.24) x10-4 Ncm-2 in the low setting, and increased to 1053.32 (SD 347.01) x10-4 Ncm-2 in the high setting (p<0.001). High posterior stress conforms to in vivo studies. Peak wall stresses were not as high in the sac (range 35.08-204.98 x 10-4 Ncm-2 in the low setting and 54.66- 322.73 x 10-4 Ncm-2 in the high setting). An increase in blood pressure caused an increase only in the anterior and lateral, but not the posterior aspect of the sac (p<0.05). Abdominal aortic wall stress is highest at the inflection point, and is affected by blood pressure, which suggests that it is the area most likely to rupture and is critical to reinforcement of the AAA. These readings are lower than stress noticed in vivo due to the lower E of latex as compared to aneurysmal aorta, which structurally is primarily a multilaminate of elastin and collagen; however, the trends themselves may parallel those that occur in AAAs before and after endovascular or open grafting, and therefore justify artificial stress modelling of AAAs.

Author(s):  
Avinash Ayyalasomayajula ◽  
Bruce R. Simon ◽  
Jonathan P. Vande Geest

Abdominal aortic aneurysm (AAA) is a progressive dilation of the infrarenal aorta and results in a significant alteration in local hemodynamic environment [1]. While an aneurysmal diameter of 5.5cm is typically classified as being of high risk, recent studies have demonstrated that maximum wall stress could be a better indicator of an AAA rupture than maximum diameter [2]. The wall stress is greatly influenced by the blood pressure, aneurysm diameter, shape, wall thickness and the presence of thrombus. The work done by Finol et al. suggested that hemodynamic pressure variations have an insignificant effect on AAA wall stress and that primarily the shape of the aneurysm determines the stress distribution. They noted that for peak wall stress studies the static pressure conditions would suffice as the in vivo conditions. Wang et al have developed an isotropic hyperelastic constitutive model for the intraluminal thrombus (ILT). Such models have been used to study the stress distributions in patient specific AAAs [3, 4].


2019 ◽  
Vol 317 (5) ◽  
pp. H981-H990 ◽  
Author(s):  
Daniel J. Romary ◽  
Alycia G. Berman ◽  
Craig J. Goergen

An abdominal aortic aneurysm (AAA), defined as a pathological expansion of the largest artery in the abdomen, is a common vascular disease that frequently leads to death if rupture occurs. Once diagnosed, clinicians typically evaluate the rupture risk based on maximum diameter of the aneurysm, a limited metric that is not accurate for all patients. In this study, we worked to evaluate additional distinguishing factors between growing and stable murine aneurysms toward the aim of eventually improving clinical rupture risk assessment. With the use of a relatively new mouse model that combines surgical application of topical elastase to cause initial aortic expansion and a lysyl oxidase inhibitor, β-aminopropionitrile (BAPN), in the drinking water, we were able to create large AAAs that expanded over 28 days. We further sought to develop and demonstrate applications of advanced imaging approaches, including four-dimensional ultrasound (4DUS), to evaluate alternative geometric and biomechanical parameters between 1) growing AAAs, 2) stable AAAs, and 3) nonaneurysmal control mice. Our study confirmed the reproducibility of this murine model and found reduced circumferential strain values, greater tortuosity, and increased elastin degradation in mice with aneurysms. We also found that expanding murine AAAs had increased peak wall stress and surface area per length compared with stable aneurysms. The results from this work provide clear growth patterns associated with BAPN-elastase murine aneurysms and demonstrate the capabilities of high-frequency ultrasound. These data could help lay the groundwork for improving insight into clinical prediction of AAA expansion. NEW & NOTEWORTHY This work characterizes a relatively new murine model of abdominal aortic aneurysms (AAAs) by quantifying vascular strain, stress, and geometry. Furthermore, Green-Lagrange strain was calculated with a novel mapping approach using four-dimensional ultrasound. We also compared growing and stable AAAs, finding peak wall stress and surface area per length to be most indicative of growth. In all AAAs, strain and elastin health declined, whereas tortuosity increased.


Author(s):  
Lambert Speelman ◽  
E. Marielle H. Bosboom ◽  
Geert Willem H. Schurink ◽  
Jaap Buth ◽  
Marcel Breeuwer ◽  
...  

In the decision for surgical repair of abdominal aortic aneurysms (AAAs), the risk of rupture is weighed carefully against the risk of the surgical procedure. Currently, AAA diameter is the main factor that determines the decision for surgery. However, in rupture risk estimation AAA wall stress has higher sensitivity and specificity than maximum diameter [1]. Moreover, peak wall stress was higher for ruptured than for non-ruptured or asymptomatic AAAs [2, 3].


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
José F. Rodríguez ◽  
Cristina Ruiz ◽  
Manuel Doblaré ◽  
Gerhard A. Holzapfel

Biomechanical studies suggest that one determinant of abdominal aortic aneurysm (AAA) rupture is related to the stress in the wall. In this regard, a reliable and accurate stress analysis of an in vivo AAA requires a suitable 3D constitutive model. To date, stress analysis conducted on AAA is mainly driven by isotropic tissue models. However, recent biaxial tensile tests performed on AAA tissue samples demonstrate the anisotropic nature of this tissue. The purpose of this work is to study the influence of geometry and material anisotropy on the magnitude and distribution of the peak wall stress in AAAs. Three-dimensional computer models of symmetric and asymmetric AAAs were generated in which the maximum diameter and length of the aneurysm were individually controlled. A five parameter exponential type structural strain-energy function was used to model the anisotropic behavior of the AAA tissue. The anisotropy is determined by the orientation of the collagen fibers (one parameter of the model). The results suggest that shorter aneurysms are more critical when asymmetries are present. They show a strong influence of the material anisotropy on the magnitude and distribution of the peak stress. Results confirm that the relative aneurysm length and the degree of aneurysmal asymmetry should be considered in a rupture risk decision criterion for AAAs.


Author(s):  
Alessandro Borghi ◽  
Nigel B. Wood ◽  
Raad H. Mohiaddin ◽  
X. Yun Xu

Thoracoabdominal aneurysm (TA) is a pathology that involves the enlargement of the aortic diameter in the inferior descending thoracic aorta and has risk factors including aortic dissection, aortitis or connective tissue disorders (Webb, T. H. and Williams, G. M. 1999). Abnormal flow patterns and stress on the diseased aortic wall are thought to play an important role in the development of this pathology and the internal wall stress has proved to be more reliable as a predictor of rupture than the maximum diameter for abdominal aortic aneurysms (Fillinger, M. F., et al. 2003). In the present study, two patients with TAs of different maximum diameters were scanned using magnetic resonance imaging (MRI) techniques. Realistic models of the aneurysms were reconstructed from the in vivo MRI data acquired from the patients, and subject-specific flow conditions were applied as boundary conditions. The wall and thrombus were modeled as hyperelastic materials and their properties were derived from the literature. Fully coupled fluid-solid interaction simulations were performed for both cases using ADINA 8.2. Results were obtained for both the flow and wall stress patterns within the aneurysms. The results show that the wall stress distribution and its magnitude are strongly dependent on the 3-D shape of the aneurysm and the distribution of thrombus.


2002 ◽  
Vol 9 (5) ◽  
pp. 665-675 ◽  
Author(s):  
Harpaul S. Flora ◽  
Bijan Talei-Faz ◽  
Leslie Ansdell ◽  
Edmund J. Chaloner ◽  
Aaron Sweeny ◽  
...  

Purpose: To use bench top techniques to examine the biophysical phenomena affecting the risk of abdominal aortic aneurysm (AAA) rupture relative to the physical properties of the aneurysm sac. Methods: Three latex AAAs with different wall elasticities were tested in a validated pulsatile flow model (PFM). Strain gauges were wired to each AAA model at the neck, inflection point, and at the maximum diameter. In initial studies, the influence of pressurization and the mechanical properties of AAA wall stress were evaluated. In subsequent studies, the latex AAAs were excluded with a tube graft and retested in the PFM. After creation of either a type I or II endoleak of known size and pressure, the systemic/intrasac pressure and the AAA wall stress were measured. Results: Each model had a complex wall-stress pattern comprising radial, longitudinal, and shear components. The peak wall stress at any point, in the presence of systemic pressurization or endoleak pressure, only reached 1% of the failure strength. In an AAA with a reinforced wall, the peak stress was significantly greater. Statistical analysis showed that wall strength contributed more significantly to wall stress than increasing pressurization within the AAA sac. Conclusions: AAA wall mechanics contribute more significantly to peak wall stress than pressure variations within the system. In particular, increased stiffness (analogous to collagen deposition) significantly increased peak wall stress, which was located at the inflection point rather than at the maximum diameter. Techniques to measure the AAA wall mechanics and the rate of deterioration may predict AAA rupture in the untreated state or in the presence of an endoleak following endovascular repair.


2019 ◽  
Vol 141 (7) ◽  
Author(s):  
S. Attarian ◽  
S. Xiao ◽  
T. C. Chung ◽  
E. S. da Silva ◽  
M. L. Raghavan

The objective of the study is to use crack propagation simulation to study the rupture site characteristics in ruptured abdominal aortic aneurysms (AAA). In a study population of four ruptured AAA harvested whole from cadavers, the rupture lines were precisely documented. The wall properties such as thickness and material parameters were experimentally determined. Using subject-specific three-dimensional (3D) geometry and a finite elastic isotropic material model with subject-specific parameters, crack propagation simulations were conducted based on basic fracture mechanics principles to investigate if and how localized weak spots may have led to the rupture lines observed upon harvest of ruptured AAA. When an initial crack was imposed at the site of peak wall stress, the propagated path did not match the observed rupture line. This indicates that in this study population, the peak wall stress was unlikely to have caused the observed rupture. When cracks were initiated at random locations in the AAA along random orientations and for random initial lengths, the orientation of the resulting propagated rupture line was always longitudinal. This suggests that the AAA morphology predisposes the AAA to rupture longitudinally, which is consistent with observations. And finally, it was found that, in this study population, rupture may have initiated at short segments of less than 1 cm length that then propagated to the observed rupture lines. This finding provides some guidance for the spatial resolution (approx. 1 cm) of weak spots to investigate for in AAA during ex vivo experimental and in vivo elastography studies. The small study population and lack of a reliable failure model for AAA tissue make these findings preliminary.


2004 ◽  
Vol 126 (4) ◽  
pp. 438-446 ◽  
Author(s):  
Robert A. Peattie ◽  
Tiffany J. Riehle ◽  
Edward I. Bluth

As one important step in the investigation of the mechanical factors that lead to rupture of abdominal aortic aneurysms, flow fields and flow-induced wall stress distributions have been investigated in model aneurysms under pulsatile flow conditions simulating the in vivo aorta at rest. Vortex pattern emergence and evolution were evaluated, and conditions for flow stability were delineated. Systolic flow was found to be forward-directed throughout the bulge in all the models, regardless of size. Vortices appeared in the bulge initially during deceleration from systole, then expanded during the retrograde flow phase. The complexity of the vortex field depended strongly on bulge diameter. In every model, the maximum shear stress occurred at peak systole at the distal bulge end, with the greatest shear stress developing in a model corresponding to a 4.3 cm AAA in vivo. Although the smallest models exhibited stable flow throughout the cycle, flow in the larger models became increasingly unstable as bulge size increased, with strong amplification of instability in the distal half of the bulge. These data suggest that larger aneurysms in vivo may be subject to more frequent and intense turbulence than smaller aneurysms. Concomitantly, increased turbulence may contribute significantly to wall stress magnitude and thereby to risk of rupture.


2008 ◽  
Vol 47 (1) ◽  
pp. 17-22 ◽  
Author(s):  
Michael S. Heng ◽  
Michael J. Fagan ◽  
Jason W. Collier ◽  
Grishma Desai ◽  
Peter T. McCollum ◽  
...  

Author(s):  
Barry J. Doyle ◽  
Anthony Callanan ◽  
John Killion ◽  
Timothy M. McGloughlin

Abdominal aortic aneurysms (AAAs) remain a significant cause of death in the Western world with over 15,000 deaths per year in the US linked to AAA rupture. Recent research [1] has questioned the use of maximum diameter as a definitive risk parameter as it is now believed that alternative factors may be important in rupture-prediction. Wall stress was shown to be a better predictor than diameter of rupture [1], with biomechanics-based rupture indices [2,3] and asymmetry also reported to have potential clinical applicability [4]. However, the majority of numerical methods used to form these alternative rupture parameters are without rigorous experimental validation, and therefore may not be as accurate as believed. Validated experiments are required in order to convince the clinical community of the worth of numerical tools such as finite element analysis (FEA) in AAA risk-prediction. Strain gauges have been used in the past to determine the strain on an AAA [5], however, the photoelastic method has also proved to be a useful tool in AAA biomechanics [6]. This paper examines the approach using three medium-sized patient-specific AAA cases at realistic pressure loadings.


Sign in / Sign up

Export Citation Format

Share Document