Research on Knowledge-Based Virtual Assembly Planning

2007 ◽  
Vol 10-12 ◽  
pp. 435-439
Author(s):  
Bin Wang ◽  
D.F. Liu ◽  
P. Wang ◽  
Q.S. Xie

In order to find an optimum assembly sequence in engineering design domain, a knowledge-based virtual assembly approach was put forward. Virtual assembly design environment was also introduced, and knowledge representation models for virtual assembly rules and cases are introduced and studied respectively. A side-center virtual assembly method was applied to avoid the occurrence of assembly interference. Finally, a case was employed to demonstrate the practicality of knowledge-based virtual assembly planning.

Author(s):  
Hugh I. Connacher ◽  
Sankar Jayaram ◽  
Kevin Lyons

Abstract Virtual reality is a technology which is often regarded as a natural extension to 3D computer graphics with advanced input and output devices. This technology has only recently matured enough to warrant serious engineering applications. The integration of this new technology with software systems for engineering, design and manufacturing will provide a new boost to the field of computer-aided engineering. One aspect of design and manufacturing which may be significantly affected by virtual reality is design for assembly. This paper presents the ideas behind a current research effort aimed at creating a virtual assembly design environment and integrating that environment with a commercial, parametric CAD system.


2021 ◽  
Author(s):  
Judy Lynn Village ◽  
Michael Greig ◽  
Saeed Zolfaghari ◽  
Filippo A. Salustri ◽  
W. P. Neumann

OCCUPATIONAL APPLICATIONS In a longitudinal collaboration with engineers and human factors specialists at an electronics manufacturer, five engineering design tools were adapted to include human factors. The tools, many with required human factors targets, were integrated at each stage of assembly design to increase the proactive application of human factors. This article describes the process of adapting the five tools within the collaborating organization. Findings suggest 12 key features of human factors tools, most importantly that they “fit” with engineering processes, language, and tools; directly address business goals and influence key metrics; and are quantifiable and can demonstrate change. To be effective in an engineering design environment, it is suggested that human factors specialists increase their understanding of their organization’s design process, learn which tools are commonly used in engineering, focus on important metrics for the business goals, and incorporate human factors into engineering-based tools and worksystem design practices in their organizations. TECHNICAL ABSTRACT Rationale: Design engineers use diverse tools in design, but few incorporate human factors, even though optimizing human performance can further improve operational performance. There is a need for practical tools to help engineers integrate human factors into production design processes. Purpose: This article demonstrates how five engineering design tools were adapted to include human factors and were integrated into design processes within the case study organization. It also provides features of an effective human factors tool and recommendations for practitioners. Method: A longitudinal collaboration with engineers and human factors specialists in a large electronics manufacturing organization allowed in vivo adaptation and testing of various tools in an action research methodology. Qualitative data were recorded from multiple sources, then transcribed and analyzed over a 3-year period. Results: The adapted tools integrated into each stage of the design process included the human factors process failure mode effects analysis, human factors design for assembly, human factors design for fixtures, workstation efficiency evaluator, and human factors kaizens. Each tool had a unique participatory development process; 12 features are recommended for effective human factors tools based on the findings herein. Most importantly, tools should “fit” with existing engineering processes, language, and tools; directly address business goals and influence key metrics; and be quantifiable and demonstrate change. Conclusions: Engineers and management responded positively to the five tools adapted for human factors because they were designed to help improve assembly design and achieve their business goals. Several of the human factors tools became required targets within the design process, ensuring that human factors considerations are built into all future design processes. Adapting engineering tools, rather than using human factors tools, required a shift for human factors specialists, who needed to expand their knowledge of engineering processes, tools, techniques, language, metrics, and goals.


Author(s):  
X.F. ZHA

Analysis of assembly properties of a product is needed during the initial design stage in order to identify potential assembly problems, which affect product performance in the later stages of life cycle. Assemblability analysis and evaluation play a key role in assembly design, assembly operation analysis and assembly planning. This paper develops a novel approach to assemblability and assembly sequence analysis and evaluation using the concept of the fuzzy set theory and neuro-fuzzy integration. Assemblability is described by assembly-operation difficulty, which can be represented by a fuzzy number between 0 and 1. Assemblability evaluation is therefore fuzzy evaluation of assembly difficulty. The evaluation structure covers not only the assembly parts' geometric and physical characteristics, but also takes into account the assembly operation data necessary to assemble the parts. The weight of each assemblability factor is subject to change to match the real assembly environments based on expert advice. The approach has the flexibility to be used in various assembly methods and different environments. It can be used in a knowledge-based design for assembly expert system with learning ability. Through integration with the CAD system, the developed system can effectively incorporate the concurrent engineering knowledge into the preliminary design process so as to provide users with suggestions for improving a design and also helping to obtain better design ideas. The applications in assembly design and planning show that the proposed approach and system are feasible.


Author(s):  
Samir Garbaya ◽  
Ulises Zaldivar-Colado

Physically-based behavior of parts and subassemblies provides the user with realistic virtual assembly planning environment. Parts’ mating is an important phase of the assembly operation. It determines the feasibility of the operation and affects the assembly sequence generated from the interaction with virtual parts. Haptic sensation of forces generated by the contacts between parts, during the mating phase, is a perception cue which assists the operator in locating the parts in their final assembly positions and orientations [1]. The research work reported in this paper focuses on modeling the dynamic behavior of mechanical parts during the execution of virtual assembly operation. The concept of spring-damper model was adopted to preclude the interpenetration of parts during the mating phase. The concept of “visual dynamic behavior” representing the manipulation of real parts was developed. More investigations are required to extend this concept to include the manipulation of subassemblies.


Author(s):  
S. Jayaram ◽  
Yong Wang ◽  
U. Jayaram ◽  
K. Lyons ◽  
P. Hart

Author(s):  
Uma Jayaram ◽  
Sankar Jayaram ◽  
Yong Yang ◽  
Kevin Lyons

Abstract The use of virtual environments to plan and evaluate assembly processes has been gaining significant acceptance in the engineering community. The prohibitive costs of immersive virtual environments and the availability of the internet have brought to the forefront the need for methods for sharing the virtual environment during the assembly evaluation process. This will support true collaborative engineering. This paper presents the design and implementation of a CORBA-based distributed virtual assembly environment. The architecture is based on capturing key states and events in the virtual assembly process. This collaborative environment is based on the VADE system created at Washington State University. Test cases were conducted using this system and the results are presented in this paper.


2012 ◽  
Vol 201-202 ◽  
pp. 1008-1012
Author(s):  
Xiang Hua Zhang ◽  
Guo Hong Dai ◽  
Feng Xie ◽  
Xiao Ying Dong

Computer Aided Assembly Process Planning is a method of automatically generating assembly process files with computer. This paper describes an integrated assembly process files generation system for virtual assembly. The objectives of this study are to integrate assembly planning of a product with its CAD model, generate a correct and practical assembly sequence and establish a software system to generate the assembly process files. The method of generating assembly process charts for virtual assmbly is researched. The system framework of generating assembly process charts is been set up. The assembly model information that needed for the assembly process charts generation is analyzed. The expression method of assembly sequence and arithmetic of generating assembly process charts is put forward. A speed reducer is used as an example to check the system.


2021 ◽  
Author(s):  
Judy Lynn Village ◽  
Michael Greig ◽  
Saeed Zolfaghari ◽  
Filippo A. Salustri ◽  
W. P. Neumann

OCCUPATIONAL APPLICATIONS In a longitudinal collaboration with engineers and human factors specialists at an electronics manufacturer, five engineering design tools were adapted to include human factors. The tools, many with required human factors targets, were integrated at each stage of assembly design to increase the proactive application of human factors. This article describes the process of adapting the five tools within the collaborating organization. Findings suggest 12 key features of human factors tools, most importantly that they “fit” with engineering processes, language, and tools; directly address business goals and influence key metrics; and are quantifiable and can demonstrate change. To be effective in an engineering design environment, it is suggested that human factors specialists increase their understanding of their organization’s design process, learn which tools are commonly used in engineering, focus on important metrics for the business goals, and incorporate human factors into engineering-based tools and worksystem design practices in their organizations. TECHNICAL ABSTRACT Rationale: Design engineers use diverse tools in design, but few incorporate human factors, even though optimizing human performance can further improve operational performance. There is a need for practical tools to help engineers integrate human factors into production design processes. Purpose: This article demonstrates how five engineering design tools were adapted to include human factors and were integrated into design processes within the case study organization. It also provides features of an effective human factors tool and recommendations for practitioners. Method: A longitudinal collaboration with engineers and human factors specialists in a large electronics manufacturing organization allowed in vivo adaptation and testing of various tools in an action research methodology. Qualitative data were recorded from multiple sources, then transcribed and analyzed over a 3-year period. Results: The adapted tools integrated into each stage of the design process included the human factors process failure mode effects analysis, human factors design for assembly, human factors design for fixtures, workstation efficiency evaluator, and human factors kaizens. Each tool had a unique participatory development process; 12 features are recommended for effective human factors tools based on the findings herein. Most importantly, tools should “fit” with existing engineering processes, language, and tools; directly address business goals and influence key metrics; and be quantifiable and demonstrate change. Conclusions: Engineers and management responded positively to the five tools adapted for human factors because they were designed to help improve assembly design and achieve their business goals. Several of the human factors tools became required targets within the design process, ensuring that human factors considerations are built into all future design processes. Adapting engineering tools, rather than using human factors tools, required a shift for human factors specialists, who needed to expand their knowledge of engineering processes, tools, techniques, language, metrics, and goals.


1999 ◽  
Vol 19 (6) ◽  
pp. 44-50 ◽  
Author(s):  
Sankar Jayaram ◽  
Uma Jayaram ◽  
Yong Wang ◽  
H. Tirumali ◽  
K. Lyons ◽  
...  

1995 ◽  
Vol 12 (2) ◽  
pp. 139-148 ◽  
Author(s):  
John V. Harrington ◽  
Hossein Soltan ◽  
Mark Forskitt

Sign in / Sign up

Export Citation Format

Share Document