KPCA Denoising and its Application in Machinery Fault Diagnosis

2011 ◽  
Vol 103 ◽  
pp. 274-278 ◽  
Author(s):  
Ling Li Jiang ◽  
Zong Qun Deng ◽  
Si Wen Tang

This paper proposes a kernel principal component analysis (KPCA)-based denoising method for removing the noise from vibration signal. Firstly, one-dimensional time series is expanded to multidimensional time series by the phase space reconstruction method. Then, KPCA is performed on the multidimensional time series. The first kernel principal component is the denoised signal. A rolling bearing denoising example verify the effectiveness of the proposed method

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Lixiang Duan ◽  
Fei Zhao ◽  
Jinjiang Wang ◽  
Ning Wang ◽  
Jiwang Zhang

Aimed at degradation prognostics of a rolling bearing, this paper proposed a novel cumulative transformation algorithm for data processing and a feature fusion technique for bearing degradation assessment. First, a cumulative transformation is presented to map the original features extracted from a vibration signal to their respective cumulative forms. The technique not only makes the extracted features show a monotonic trend but also reduces the fluctuation; such properties are more propitious to reflect the bearing degradation trend. Then, a new degradation index system is constructed, which fuses multidimensional cumulative features by kernel principal component analysis (KPCA). Finally, an extreme learning machine model based on phase space reconstruction is proposed to predict the degradation trend. The model performance is experimentally validated with a whole-life experiment of a rolling bearing. The results prove that the proposed method reflects the bearing degradation process clearly and achieves a good balance between model accuracy and complexity.


2013 ◽  
Vol 397-400 ◽  
pp. 1282-1285 ◽  
Author(s):  
Wen Bin Liu ◽  
Yu Xin He ◽  
Hua Qing Wang ◽  
Jian Feng Yang

In order to extract the fault feature validity in early fault diagnosis, method based on kernel principal component analysis and genetic programming (GP) is presented. The time domain features of the vibration signal are extracted and the initial symptom parameters (SP) are constructed. Then the combination to the initial SPs is carried on to optimize and build composite characteristics by GP. Through kernel principal component analysis (KPCA), the nonlinear principal component of the original characteristics is produced. Finally, the nonlinear principal components are selected as the feature subspace to classify the conditions of rolling bearing. Meanwhile, the within-class and among-class distance is introduced to compare and analyze the bearing condition recognition effect by using KPCA and GP plus KPCA separately. Experimental results show that the features extracted by kernel principal component analysis and genetic programming perform better ability in identifying the working states of the rolling bearing.


Author(s):  
Ruqiang Yan ◽  
Robert X. Gao ◽  
Kang B. Lee ◽  
Steven E. Fick

This paper presents a noise reduction technique for vibration signal analysis in rolling bearings, based on local geometric projection (LGP). LGP is a non-linear filtering technique that reconstructs one dimensional time series in a high-dimensional phase space using time-delayed coordinates, based on the Takens embedding theorem. From the neighborhood of each point in the phase space, where a neighbor is defined as a local subspace of the whole phase space, the best subspace to which the point will be orthogonally projected is identified. Since the signal subspace is formed by the most significant eigen-directions of the neighborhood, while the less significant ones define the noise subspace, the noise can be reduced by converting the points onto the subspace spanned by those significant eigen-directions back to a new, one-dimensional time series. Improvement on signal-to-noise ratio enabled by LGP is first evaluated using a chaotic system and an analytically formulated synthetic signal. Then analysis of bearing vibration signals is carried out as a case study. The LGP-based technique is shown to be effective in reducing noise and enhancing extraction of weak, defect-related features, as manifested by the multifractal spectrum from the signal.


2013 ◽  
Vol 329 ◽  
pp. 269-273
Author(s):  
Ling Li Jiang ◽  
Ping Li ◽  
Bo Zeng

Denoising is an essential part of fault signal analysis. This paper proposes a kernel independent component analysis (KICA)-based denoising method for removing the noise from vibration signal. By introducing noise components of the observed signal, one-dimensional observed signal is extended to multi-dimensional signal. Then performing KICA on multidimensional signal, the noise in the observed signal consistent with the introduced noise will be removed that achieve the purpose of denosing. The effectiveness of the proposed method is demonstrated by the case study.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Na Lu ◽  
Guangtao Zhang ◽  
Yuanchu Cheng ◽  
Diyi Chen

Vibration signal of rotating machinery is often submerged in a large amount of noise, leading to the decrease of fault diagnosis accuracy. In order to improve the denoising effect of the vibration signal, an adaptive redundant second-generation wavelet (ARSGW) denoising method is proposed. In this method, a new index for denoising result evaluation (IDRE) is constructed first. Then, the maximum value of IDRE and the genetic algorithm are taken as the optimization objective and the optimization algorithm, respectively, to search for the optimal parameters of the ARSGW. The obtained optimal redundant second-generation wavelet (RSGW) is used for vibration signal denoising. After that, features are extracted from the denoised signal and then input into the support vector machine method for fault recognition. The application result indicates that the proposed ARSGW denoising method can effectively improve the accuracy of rotating machinery fault diagnosis.


2012 ◽  
Vol 226-228 ◽  
pp. 210-215
Author(s):  
Sui Zheng Zhang ◽  
Jian Yu Zhang ◽  
Yang Yang

Multi-wavelet has many excellent properties that single wavelet cannot satisfy simultaneously, such as symmetry, orthogonality, compact support and high vanishing moments etc. It contains several scaling functions and wavelet functions, which can make it match different characteristics of analyzed signal. Therefore, it is always used in bearing fault diagnosis. However, multi-wavelet is multi-dimensional and vibration signal is one-dimensional, so the 1-D vibration signal should be preprocessed before being decomposed with multi-wavelet. It means that the initial data need to be converted to r-dimensional data, and then is input to a tower algorithm. If preprocessing is done, multi-wavelet properties will be destroyed. Due to balanced multi-wavelet has unique properties, the preprocessing can be omitted. In this paper, a balanced multi-wavelet called CL4BAL is designed through balancing original CL4 multi-wavelet and is applied in the vibration signal processing. Comparing the frequency band index after decomposition and reconstruction of CL4BAL and CL4 multi-wavelet, it can be proved that CL4BAL is much better than that of CL4 multi-wavelet in bearing fault diagnosis.


2020 ◽  
Vol 44 (3) ◽  
pp. 405-418
Author(s):  
Shuzhi Gao ◽  
Tianchi Li ◽  
Yimin Zhang

Taking aim at the nonstationary nonlinearity of the rolling bearing vibration signal, a rolling bearing fault diagnosis method based on the entropy fusion feature of complementary ensemble empirical mode decomposition (CEEMD) is proposed in combination with information fusion theory. First, CEEMD of the vibration signal of the rolling bearing is performed. Then the signal is decomposed into the sum of several intrinsic mode functions (IMFs), and the singular entropy, energy entropy, and permutation entropy are obtained for the IMFs with fault features. Second, the feature extraction method of entropy fusion is proposed, and the three entropy data obtained are input into kernel principal component analysis (KPCA) for feature fusion and dimensionality reduction to obtain complementary features. Finally, the extracted features are imported into the particle swarm optimization (PSO) algorithm to optimize the least-squares support vector machine (LSSVM) for fault classification. Through experimental verification, the proposed method can be used for roller bearing fault diagnosis.


2011 ◽  
Vol 467-469 ◽  
pp. 1427-1432 ◽  
Author(s):  
Xiao Qiang Zhao ◽  
Zhan Ming Li

For complicated nonlinear systems, the data inevitably have noise, random disturbance, Traditional kernel principal component analysis (KPCA) methods are very difficult to calculate the kernel matrix K for fault detection with large sample sets. So an improved KPCA method based on wavelet denoising is proposed. First, wavelet denoising method is used for data processing, then the improved KPCA method can reduce calculational complexity of fault detection. The proposed method is applied to the benchmark of Tennessee Eastman (TE) processes. The simulation results show that the proposed method can effectively improve the speed of fault detection.


Sign in / Sign up

Export Citation Format

Share Document