FEA of Residual Stresses in Butt Welded Type Low Carbon Steel Using MMAW Technique

2011 ◽  
Vol 110-116 ◽  
pp. 2686-2692
Author(s):  
Gurinder Singh Brar ◽  
Gurdeep Singh

Welding is a reliable and efficient joining process in which the coalescence of metals is achieved by fusion. Welding is widely employed in diverse structures such as ships, aircraft, marine structures, bridges, ground vehicles, pipelines and pressure vessels. When two dissimilar plates are joined by welding process, a very complex thermal cycle is applied to the weldment, which further causes inhomogeneous plastic deformation and residual stress in and around fusion zone and heat affected zone (HAZ). Presence of residual stresses may be beneficial or harmful for the structural components depending on the nature and magnitude of residual stresses. In this study, a finite element analysis has been carried out to analyze the thermo-mechanical behaviour and effect of residual stress state in butt-welded in low carbon steel plates. A coupled thermal mechanical three dimension finite element model was developed. Finite element method based software SolidWorks Simulation, was then used to evaluate transient temperature and residual stress during butt welding of two plates. Plate thickness of 8 mm were used which are normally joined by multi-pass operation by Manual Metal Arc Welding (MMAW) process. During each pass, attained peak temperature and variation of residual stresses in plates has also been studied. The results obtained by finite element method agree well with those from X-ray diffraction method as published by Murugan et al. for the prediction of residual stresses.

Author(s):  
Gurinder Singh Brar ◽  
Gurdeep Singh

In this paper a three-dimensional welding simulation was carried out by commercially available finite element software to predict temperature and the residual stress distributions in V-butt welded joint of two dissimilar pipes. Low carbon steel and stainless steel pipe welding is widely used in a variety of engineering applications such as oil and gas industries, nuclear and thermal power plants and chemical plants. Inelastic deformations during heat treatment are the major cause of residual stress. Heat during welding causes localized expansion as some areas cool and contract more than others. The stress variation in the weldment can be very complex and can vary between compressive and tensile stresses. The mismatching (in the weld in general) occurs due to joint geometry and plate thickness. Welding procedures and degree of restraints also influences the residual stress distributions. To understand the behavior of residual stress, two dissimilar pipes one of stainless steel and another of low carbon steel with outer diameter of 356 mm and internal diameter 240 mm were butt welded. The welding was completed in three passes. The first pass was performed by Manual TIG Welding using ER 309L as a filler metal. The remaining weld passes were welded by Manual Metal Arc Welding (MMAW) and ER 309L-16 was used as a filler metal. During each pass, attained peak temperature and variation of residual stresses and magnitude of axial stress and hoop stress in pipes has been calculated. The results obtained by finite element method agree well with those from Ultrasonic technique (UT) and Hole Drilling Strain-Gauge (HDSG) as published by Akhshik and Moharrami (2009) for the improvement in accuracy of the measurements of residual stresses.


2013 ◽  
Vol 758 ◽  
pp. 1-10
Author(s):  
Fabiano Rezende ◽  
Luís Felipe Guimarães de Souza ◽  
Pedro Manuel Calas Lopes Pacheco

Welding is a complex process where localized and intensive heat is imposed to a piece promoting mechanical and metallurgical changes. Phenomenological aspects of welding process involve couplings among different physical processes and its description is unusually complex. Basically, three couplings are essential: thermal, phase transformation and mechanical phenomena. Welding processes can generate residual stress due to the thermal gradient imposed to the workpiece in association to geometric restrictions. The presence of tensile residual stresses can be especially dangerous to mechanical components submitted to fatigue loadings. The present work regards on study the residual stress in welded superduplex stainless steel pipes using experimental and a numerical analysis. A parametric nonlinear elastoplastic model based on finite element method is used for the evaluation of residual stress in superduplex steel welding. The developed model takes into account the coupling between mechanical and thermal fields and the temperature dependency of the thermomechanical properties. Thermocouples are used to measure the temperature evolution during welding stages. Instrumented hole drilling technique is used for the evaluation of the residual stress after welding process. Experimental data is used to calibrate the numerical model. The methodology is applied to evaluate the behavior of two-pass girth welding (TIG for root pass and SMAW for finishing) in 4 inch diameter seamless tubes of superduplex stainless steel UNS32750. The result shows a good agreement between numerical experimental results. The proposed methodology can be used in complex geometries as a powerful tool to study and adjust welding parameters to minimize the residual stresses on welded mechanical components.


2012 ◽  
Vol 2012.61 (0) ◽  
pp. _715-1_-_715-2_
Author(s):  
Nobuaki Nakamura ◽  
Yoshihisa Sakaida ◽  
Hajime Yoshida ◽  
Yuji Sano

1993 ◽  
Vol 115 (4) ◽  
pp. 417-423 ◽  
Author(s):  
Y. Ueda ◽  
M. G. Yuan

The source of residual stresses in the vicinity of a weld may be expressed in terms of inherent strains. The characteristics of the inherent strain distributions in butt welds are investigated. It is found that the patterns vary little with changes in the welding conditions and sizes of the welded plates. With some assumptions, simple formulas are derived for the distribution and magnitude of inherent strain in a butt weld. A method of predicting the residual stress in a butt-welded plate using the characteristics of inherent strain distributions is presented. The validity of the method is confirmed by thermal elasto-plastic analysis using the finite element method (FEM).


Author(s):  
Jenan Mohammed Naje ◽  
Nidaa Hameed Dawood ◽  
Sara Saad Ghazi

This paper explores the effect of ultrasonic peening using various passes on an impact strength of AISI 1020 low carbon steel. Many ASTM E23 impact specimens were prepared from the chosen metal and exposed to multi-pass ultrasonic peening (1,2,3 pass). Microstructure, hardness, residual stresses, and impact tests on ultrasonic peened and not peened samples were performed. Ultrasonic peening contributed to increasing the impact strength, due to the increase in comparative residual stress and hardness. Three passes show improvement in strength by (29.7%), comparative with the base metal.


The non-uniform thermal expansion and contraction resulting from welding processes cause residual stresses and strains. Experimental studies on measuring welding residual stresses and strains of structure are costly and sometimes they are not possible. Previously, analytical methods with idealized models were developed to determine the welding residual stresses and strain. Recently, numerical methods are constructed to analyze the stresses and the strains in welded structures. This paper presents the calculation results of residual stress and welding strain in butt welded joint of S355J2G3 carbon steel of 5 mm thickness made by MAG welding process with a single pass. The calculation is performed by two methods: the imaginary force method and the finite element method. In the finite element method, the SYSWELD software is used to simulate and to determine residual stresses and strain of this welded joint. The results of finite element method are compared with those of imaginary force method to show the rationality and the advantages of finite element method. The study results have shown that in this welded joint, only the longitudinal and transverse stress components are important and the other stress components are negligible.


Author(s):  
D. H. Tailor ◽  
K. N. Srinivasan ◽  
S. A. Channiwala ◽  
M. Sohel M. Panwala

Welding is one of the most important material-joining processes widely used in industry. Low carbon steel and stainless steel with thin plates are widely used in the fabrication of pressure vessels and other components. Thin plates are joints together by the Tungsten inert gas welding (GTAW) methods. Temperature distribution that occurs during welding affects the microstructure, mechanical properties and the residual stresses that will be present in the welded material. This paper discusses the development of a model for the temperature distribution during butt welding at different heat inputs using Finite difference method (FDM). The model is created from first principles of heat transfer and utilizes contact conduction that is a function of temperature, Gaussian heat distribution, and many material properties that vary with temperature. The temperature distribution curves obtained with this model are presented. This transient temperature field has been validated with experimentation of measuring temperature during welding of butt welded of low carbon steel using GTAW process. Using this FDM code, the range of error between the model and experimental results is −11.21 to 2.63%, demonstrating the accuracy of the model.


2018 ◽  
Vol 140 (2) ◽  
Author(s):  
Yun Luo ◽  
Wenchun Jiang ◽  
Dongfeng Chen ◽  
Robert C. Wimpory ◽  
Meijuan Li ◽  
...  

Repair welding is a popular method to repair the leakage zone in tube-to-tubesheet joint of shell-tube heat exchangers. But the repaired residual stresses are generated inevitably and have a great effect on stress corrosion cracking (SCC). In this paper, the effects of repair welding on residual stress were studied by finite element method (FEM) and neutron diffraction measurement. The original weld residual stresses calculated by FEM showed good agreement with neutron diffraction measurement results. After repair welding, the transverse residual stresses change very little while the longitudinal residual stresses are increased in the repair zone. In the nonrepair zone, both the transverse and longitudinal stresses are decreased. The repair welding times have little effect on residual stress distribution. With the increase of welding length and heat input, the residual stresses increase. Repair opposite to the original welding direction is recommended because the opposite welding direction minimizes the residual stresses.


1973 ◽  
Vol 95 (1) ◽  
pp. 283-291 ◽  
Author(s):  
C. H. Lee ◽  
H. Iwasaki ◽  
S. Kobayashi

Three problems, namely, autofrettage process, plastic upsetting of a solid cylinder, and plane-strain and axisymmetric extrusion, are treated for residual stress calculation. A thick-walled cylinder consisting of two loosely fitted concentric cylinders of different materials is subjected to various levels of internal pressure. The residual stresses were calculated with an emphasis on the case where the inner surface of the cylinder yields again upon removal of the internal pressure. Comparison between the calculations and the measurements is given. The residual stresses in plastic upsetting of a solid cylinder were calculated by the finite-element method. An attempt was also made to simulate the real situation in extrusion by the finite-element method. An estimation of the residual stress distribution is then discussed for axisymmetric extrusion problems.


Sign in / Sign up

Export Citation Format

Share Document