Girth Calculative Rules Research of Female Lower Body Torso Based on Three Dimensional Cloud Point Data

2011 ◽  
Vol 121-126 ◽  
pp. 4486-4490

Removed due do double publication.

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2619
Author(s):  
Yoshiaki Kataoka ◽  
Ryo Takeda ◽  
Shigeru Tadano ◽  
Tomoya Ishida ◽  
Yuki Saito ◽  
...  

Recently, treadmills equipped with a lower-body positive-pressure (LBPP) device have been developed to provide precise body weight support (BWS) during walking. Since lower limbs are covered in a waist-high chamber of an LBPP treadmill, a conventional motion analysis using an optical method is impossible to evaluate gait kinematics on LBPP. We have developed a wearable-sensor-based three-dimensional motion analysis system, H-Gait. The purpose of the present study was to investigate the effects of BWS by a LBPP treadmill on gait kinematics using an H-Gait system. Twenty-five healthy subjects walked at 2.5 km/h on a LBPP treadmill under the following three conditions: (1) 0%BWS, (2) 25%BWS and (3) 50%BWS conditions. Acceleration and angular velocity from seven wearable sensors were used to analyze lower limb kinematics during walking. BWS significantly decreased peak angles of hip adduction, knee adduction and ankle dorsiflexion. In particular, the peak knee adduction angle at the 50%BWS significantly decreased compared to at the 25%BWS (p = 0.012) or 0%BWS (p < 0.001). The present study showed that H-Gait system can detect the changes in gait kinematics in response to BWS by a LBPP treadmill and provided a useful clinical application of the H-Gait system to walking exercises.


2008 ◽  
Vol 25 (3) ◽  
pp. 563-570 ◽  
Author(s):  
J. P. Bender ◽  
A. Junges ◽  
E. Franceschi ◽  
F. C. Corazza ◽  
C. Dariva ◽  
...  

2013 ◽  
Vol 807-809 ◽  
pp. 1921-1927
Author(s):  
Peng Tong ◽  
Hong Cheng Liu ◽  
Shuai Hua Gao

Airborne LiDAR System is a laser detection and ranging system for quickly obtaining high-precision, high-density three-dimensional coordinate data. The target information after the geological disasters can be victimized for disaster assessment and decision analysis to provide effective support, LiDAR provides a new technical means for disaster mitigation, relief works. This paper focuses on the application of airborne LiDAR system in geological disasters, it summarizes some experience of the LiDAR point data acquisition and processing, and the results of the LiDAR point data.


Author(s):  
F. Thiébaut ◽  
S. Bendjebla ◽  
Y. Quinsat ◽  
C. Lartigue

The paper discusses thin part inspection using three-dimensional (3D) non rigid registration. The main objective is to match measurement point data to its nominal representation, so as to identify form defects. Since form defects have the same size order as the thickness of the part, establishing such matching is a challenging task. The originality of the method developed in this paper is using a deformable iterative closet point algorithm (ICP), and integrating modal approach to express form defects. The method described improves the matching through iteration of the ICP and establishes a definition of the error. The results of the application show that the present method is efficient.


2011 ◽  
Vol 201-203 ◽  
pp. 113-116 ◽  
Author(s):  
Jie Yang ◽  
Lei Zhao

According to the surface integration of laser technology and computer-aided design and computer-aided manufacturing technology (CAD & CAM), a method that is rebuilt surface of three-dimensional facial reconstruction has been explored. A laser scanning system is used to collect the 3D discrete point data of the facial model, which will be cut up by their characteristics and curvature in order to make a 3D face reconstruction. The maximum reconstructive error is 0.2174mm. Application results indicate that the proposed method is quite satisfactory for facial reconstructive surgery, rehabilitation design and plastic surgery.


2020 ◽  
Author(s):  
Yoshiaki Kataoka ◽  
Tomohiro Shimizu ◽  
Ryo Takeda ◽  
Shigeru Tadano ◽  
Yuki Saito ◽  
...  

Abstract Background: Hip osteoarthritis (OA) is a musculoskeletal condition that makes walking difficult due to pain induced by weight-bearing activity. Treadmills that support body weight reduce the load on the lower limbs, and those equipped with a lower-body positive pressure (LBPP) device, developed as a new method for unweighting, significantly reduce pain in patients with knee OA. However, the effects of unweighting on gait kinematics remain unclear in patients with hip OA. Therefore, we investigated the effects of unweighting on kinematics in patients with hip OA during walking on a treadmill equipped with an LBPP device.Methods: Fifteen women with hip OA and fifteen age-matched female controls wore a three-dimensional motion analysis system and walked at a self-selected speed on the LBPP treadmill. Data regarding hip pain using a numeric rating scale under three different unweighting conditions (100%, 75%, and 50% bodyweight) were collected. Three-dimensional peak joint angles during gait under each condition were calculated and compared.Results: In the hip OA group, numerical rating scores at the unweighted conditions were significantly decreased compared to the 100% bodyweight condition, and peak hip extension angle decreased compared to the healthy controls. In both groups, unweighting significantly decreased the peak hip and knee flexion angle and increased the peak ankle plantarflexion angle during walking.Conclusions: Although unweighting by LBPP decreased pain in the hip OA group, gait kinematics did not alter despite less load on the hip joint. Therefore, clinicians should consider the benefits of pain reduction, rather than the alternation of gait kinematics, when considering LBPP treadmill for patients with hip OA.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Fong-Gong Wu ◽  
Chii-Zen Yu

In this study, we developed a computer-aided product design method for goblet styling design based on two methods. The first was parametric design derived from an adjustable cam mechanism, which was used for shape generation, and the second was Kansei engineering, which was used for shape evaluation. In the shape generation method, motion curves from an adjustable cam were used. Designers can collect feature point data from existing products to define the boundary conditions of adjustable cam motion equations; furthermore, adjustable motion curves allow parametric design. Through adjusting a single parameter, motion curves were changed to be used as projective curves for the styling design of goblets. Then, a coordinate transformation method was applied to support the three-dimensional styling design of goblets. In the shape evaluation method, some goblet stylings were regularly selected to determine adjective degrees by production design experts. Adjective degrees for goblets that had not been selected were determined through interpolation. Market demand was defined as the preference of customers for specific adjective degrees for goblets.


Author(s):  
Gülhan Benli

Since the 2000s, terrestrial laser scanning, as one of the methods used to document historical edifices in protected areas, has taken on greater importance because it mitigates the difficulties associated with working on large areas and saves time while also making it possible to better understand all the particularities of the area. Through this technology, comprehensive point data (point clouds) about the surface of an object can be generated in a highly accurate three-dimensional manner. Furthermore, with the proper software this three-dimensional point cloud data can be transformed into three-dimensional rendering/mapping/modeling and quantitative orthophotographs. In this chapter, the study will present the results of terrestrial laser scanning and surveying which was used to obtain three-dimensional point clouds through three-dimensional survey measurements and scans of silhouettes of streets in Fatih in Historic Peninsula in Istanbul, which were then transposed into survey images and drawings. The study will also cite examples of the facade mapping using terrestrial laser scanning data in Istanbul Historic Peninsula Project.


2013 ◽  
Vol 29 (1) ◽  
pp. 105-111 ◽  
Author(s):  
Felix Stief ◽  
Harald Böhm ◽  
Katja Michel ◽  
Ansgar Schwirtz ◽  
Leonhard Döderlein

The standard Plug-in-Gait (PiG) protocol used in three-dimensional gait analysis is prone to errors arising from inconsistent anatomical landmark identification and knee axis malalignment. The purpose of this study was to estimate the reliability and accuracy of a custom made lower body protocol (MA) compared with the PiG protocol. Twenty-fve subjects volunteered to evaluate the intertrial reliability. In addition, intersession reliability was examined in 10 participants. An indirect indicator of accuracy according to the knee varus/valgus and flexion/extension range of motion (ROM) was used. Regarding frontal plane knee angles and moments as well as transverse plane motions in the knee and hip joint, the intersession errors were lower for the MA compared with the standard approach. In reference to the knee joint angle cross-talk, the MA produced 4.7° more knee flexion/extension ROM and resulted in 6.5° less knee varus/valgus ROM in the frontal plane. Therefore, the MA tested in this study produced a more accurate and reliable knee joint axis compared with the PiG protocol. These results are especially important for measuring frontal and transverse plane gait parameters.


Author(s):  
Luis A. Contreras ◽  
Abel Pacheco-Ortega ◽  
Jose I. Figueroa ◽  
Walterio W. Mayol-Cuevas ◽  
Jesus Savage

Sign in / Sign up

Export Citation Format

Share Document