The Degradation and BMP Release Dynamics of Silica-Based Xerogels Modified by Adding Calcium and Magnesium or Sintering Process

2012 ◽  
Vol 151 ◽  
pp. 378-382 ◽  
Author(s):  
Xiao Sheng Li ◽  
Wei Lin ◽  
Feng Lan Xing

A new mesoporous silica xerogel used as biodegradable material was synthesized by improved sol-gel methods. The xerogel’s degradation character and property of releasing character for bone morphological protein (BMP)were modified by adding calcium (Ca) and phosphor (P) elements into pure silica xerogel, and uesing sintering processes, as well as adding magnesium (Mg) into silica xerogel. The differential thermal and thermogravimetric analysis (DTA-TG), X-Ray diffraction analysis(XRD), Fourier infrared spectrum analysis (FITR), N2 adsorption-desorption analysis, Scanning electron microscope(SEM) and Transmitting electron microscope (TEM) observation were used to measure the thermal effects, crystalline state, pore diameter and specific surface area, surface morphology and inner structure of the xerogels. The xerogel’s degradability and BMP release were studied by simulated body fluid (SBF) immersion. The results indicated that the synthesized xerogels were mesoporous structure with pore diameter around 3 nm and the big specific surface area about 1000 m2/g.They were non crystall with hydroxyl and micro-molecular silica-oxygen groups. Xerogels dried at low sintering temperature degraded completely in 42 days in bursting manner and degraded in linear curves with sintering temperature increased as well as adding calcium and magnesium into xerogels. The BMP release behaviour from the Mg-xerogel dried naturally was in controlled manner.

2007 ◽  
Vol 336-338 ◽  
pp. 2286-2289
Author(s):  
Fei He ◽  
Xiao Dong He ◽  
Yao Li

Low-density xSiO2-(1-x)Al2O3 xerogels with x=0.9, 0.8, 0.7, 0.6 (mole fractions) were prepared by sol-gel and non-supercritical drying. Silica alkogels, which were the framework of binary composite materials, formed from tetraethyl orthosilicate (TEOS) by hydrolytic condensation with a molar ratio of TEOS: H2O: alcohol: hydrochloric acid: ammonia =1: 4: 10: 7.5×10-4: 0.0375. Aluminum hydroxide derived from Al(NO3)3·9H2O and NH4OH acting in the alcohol solution under the condition of catalyst. After filtrating and washing, the precipitation was mixed into silica sols to form SiO2-Al2O3 mixed oxide gels with different silicon and aluminum molar ratio. The structural change and crystallization of the binary xerogels were investigated after heat treatment at 600 for 2 h by the means of X-ray diffraction. Nitrogen adsorption experiment was performed to estimate specific surface area, porous volume and pore size distribution. The structural change of xerogels was observed by FT-IR spectroscopy. The resulting mixed xerogels possess of mesoporous structure which is characteristic of cylindrical pores, high specific surface area of 596-863 m2/g and a relatively narrow pore distribution of 2.8-30 nm. Al2O3 is introduced into the SiO2 phase and some of Al-O-Si bonds form.


2014 ◽  
Vol 513-517 ◽  
pp. 82-85
Author(s):  
Rui Rui Li ◽  
Yue Shi ◽  
Lei Zu ◽  
Hui Qin Lian ◽  
Yang Liu ◽  
...  

The mesoporous polycarbonate-silica nanocomposite materials were synthesized through the modified sol-gel approach under acidic condition. The specific surface area, pore diameter and pore volume of polycarbonate-silica could be controlled by changing the acidity of the synthesis system. The polycarbonate-silica possess an irregular block morphology according to the scanning electron microscopy observations. With decreasing the pH value of the synthesis system, the specific surface area and pore diameter of polycarbonate-silica were raised but the pore volume was reduced. The maximum specific surface area of polycarbonate-silica was 701.71m2/g which presented by the results of Nitrogen adsorptiondesorption isotherms.


Minerals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Huiqun Niu ◽  
Hongying Yang ◽  
Linlin Tong

In this paper, the structures of element carbon and humic acid extracted from carbonaceous gold concentrate were characterized employing a variety of analytical methods. The extracted amounts of ECE (elemental carbon extract) and HAE (humic acid extract) were 14.84–38.50 and 11.55–28.05 mg g−1, respectively. SEM and porosity analysis indicated that ECE occurred mostly as irregular blocky particles with a mesoporous surface with the average pore diameter being 31.42 nm. The particle size of ECE was mainly ranged from 5.5 to 42 μm and the specific surface area was 20.35 m2 g−1. The physicochemical features and structure of ECE were close to activated carbon, and the crystallinity was slightly lower than graphite. The particle size distribution of HAE varied from 40 to 400 nm with the specific surface area of 42.84 m2 g−1, whereas the average pore diameter of HAE was 2.97 nm. FTIR and UV–VIS analyses indicated that HAE was a complex organic compound containing the enrichment of oxygen-containing structure. The results showed that the adsorption amounts of ECE and HAE under the acidic conditions were 470.46 and 357.60 mg g−1, respectively. In an alkaline environment, the amount of ECE was 449.02 mg g−1 and the value of HAE was 294.72 mg g−1. ECE mainly utilized the outer surface and mesoporous structure to adsorb gold, while the functional groups’ complexation or surface site adsorption was the leading approach for HAE to adsorb gold.


2008 ◽  
Vol 6 (3) ◽  
pp. 482-487 ◽  
Author(s):  
Ozgecan Ergu ◽  
Metin Gürü ◽  
Canan Cabbar

AbstractAlumina-zirconia composite materials were produced with different acid ratios by the sol-gel method using aluminum isopropoxide and zirconium chloride. The composites were produced by changing acid/alkoxside ratio in alumina. The composite materials were calcinated at 600°C, 900°C and 1300°C. The effects of acid concentration and calcination temperature on the surface area and pore radius were determined from the nitrogen adsorption isotherm at 77 K. The density of the composites was also measured. The minimum density of produced material was recorded as 1.35 g cm−3 at an acid/alkoxside ratio of 0.2. The highest specific surface area and pore diameter of the lightest material are 191.86 m2 g−1 and 18.4 Ǻ, respectively. Although pore diameter and specific surface area are not changed at any of the experimental temperatures which were tested by decreasing acid/alkoxside ratio, the density is slightly increased. However, it was observed that the calcination temperature significantly affects the surface area and density of the material.


2021 ◽  
Vol 22 (1) ◽  
pp. 101-109
Author(s):  
A.B. Hrubiak ◽  
O.Yu. Khyzhun ◽  
B.K. Ostafiychuk ◽  
V.V. Moklyak ◽  
Yu.V. Yavorskyi ◽  
...  

The  modified sol-gel synthesis technique was used to created of nanostructured maghemite (γ-Fe2O3). It has been shown that the molar concentration of the original precursors during synthesis affects on the average particle sizes, specific surface area, pore size distributions, optical and conductivity properties. The XPS metod allowed to establish features of electronic structure of the synthesized materials. Optimal conditions for the synthesis of nanostructured maghemite with mesoporous structure were selected. The mechanism of electrical conductivity formation for synthesized mesoporous materials was established. The width of the band gap is determined and its dependence on the molar concentration of precursors is established. The positive correlation between the specific surface area of γ-Fe2O3 samples and photocatalytic activity was installed - the photocatalytic activity of synthesized γ-Fe2O3 increase with growth of specific surface area of γ-Fe2O3 samples.


2017 ◽  
Vol 68 (3) ◽  
pp. 483-486
Author(s):  
Constantin Sorin Ion ◽  
Mihaela Bombos ◽  
Gabriel Vasilievici ◽  
Dorin Bombos

Desulfurisation of atmospheric distillation gasoline and gas oil was performed by adsorption process on Fe/ bentonite. The adsorbent was characterized by determining the adsorption isotherms, specific surface area, pore volume and average pore diameter. Adsorption experiments of atmospheric distillation gasoline and gas oil were performed in continuous system at 280�320oC, 5 atm and volume hourly space velocities of 1�2 h-1. The efficiency of adsorption on Fe / bentonite was better at desulphurisation of gasoline versus gas oil.


2021 ◽  
Author(s):  
Prakash Parajuli ◽  
Sanjit Acharya ◽  
Julia Shamshina ◽  
Noureddine Abidi

Abstract In this study, alkali and alkaline earth metal chlorides with different cationic radii (LiCl, NaCl, and KCl, MgCl2, and CaCl2) were used to gain insight into the behavior of cellulose solutions in the presence of salts. The specific focus of the study was evaluation of the effect of salts’ addition on the sol-gel transition of the cellulose solutions and on their ability to form monoliths, as well as evaluation of the morphology (e.g., specific surface area, pore characteristics, and microstructure) of aerocelluloses prepared from these solutions. The effect of the salt addition on the sol-gel transition of cellulose solutions was studied using rheology, and morphology of resultant aerogels was evaluated by Scanning Electron Microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis, while the salt influence on the aerocelluloses’ crystalline structure and thermal stability was evaluated using powder X-Ray Diffraction (pXRD) and Thermogravimetric Analysis (TGA), respectively. The study revealed that the effect of salts’ addition was dependent on the component ions and their concentration. The addition of salts in the amount below certain concentration limit significantly improved the ability of the cellulose solutions to form monoliths and reduced the sol-gel transition time. Salts of lower cationic radii had a greater effect on gelation. However, excessive amount of salts resulted in the formation of fragile monoliths or no formation of gels at all. Analysis of surface morphology demonstrated that the addition of salts resulted in a significant increase in porosity and specific surface area, with salts of lower cationic radii leading to aerogels with much larger (~1.5 and 1.6-fold for LiCl and MgCl2, respectively) specific surface area compared to aerocelluloses prepared with no added salt. Thus, by adding the appropriate salt into the cellulose solution prior to gelation, the properties of aerocelluloses that control material’s performance (specific surface area, density, and porosity) could be tailored for a specific application.


2011 ◽  
Vol 10 (2) ◽  
pp. 25
Author(s):  
Anirut Leksomboon ◽  
Bunjerd Jongsomjit

In this present study, the spherical silica support was synthesized from tetraethyloxysilane (TEOS), water, sodium hydroxide, ethylene glycol and n-dodecyltrimethyl ammonium bromide (C12TMABr). The particle size was controlled by variation of the ethylene glycol co-solvent weight ratio of a sol-gel method preparation in the range of 0.10 to 0.50. In addition, the particle size apparently increases with high weight ratio of co-solvent, but the particle size distribution was broader. The standard deviation of particle diameter is large when the co-solvent weight ratio is more than 0.35 and less than 0.15. However, the specific surface area was similar for all weight ratios ranging from 1000 to 1300 m2/g. The synthesized silica was spherical and has high specific surface area. The cobalt was impregnated onto the obtained silica to produce the cobalt catalyst used for CO2 hydrogenation.</


2018 ◽  
Vol 37 (1) ◽  
pp. 251-272 ◽  
Author(s):  
Junjian Zhang ◽  
Chongtao Wei ◽  
Gaoyuan Yan ◽  
Guanwen Lu

To better understand the structural characteristic of adsorption pores (pore diameter < 100 nm) of coal reservoirs around the coalbed methane production areas of western Yunnan and eastern Guizhou, we analyzed the structural and fractal characteristics of pore size range of 0.40–2.0 nm and 2–100 nm in middle–high rank coals ( Ro,max = 0.93–3.20%) by combining low-temperature N2/CO2 adsorption tests and surface/volume fractal theory. The results show that the coal reservoirs can be divided into three categories: type A ( Ro,max < 2.15%), type B (2.15% <  Ro,max <2.50%), and type C ( Ro,max > 2.15%). The structural parameters of pores in the range from 2 to 100 nm are influenced by the degree of coal metamorphism and the compositional parameters (e.g., ash and volatile matter). The dominant diameters of the specific surface areas are 10–50 nm, 2–50 nm, and 2–10 nm, respectively. The pores in the range from <2 nm provide the largest proportion of total specific surface area (97.22%–99.96%) of the coal reservoir, and the CO2-specific surface area and CO2-total pore volume relationships show a positive linear correlation. The metamorphic degree has a much greater control on the pores (pore diameter less than 2 nm) structural parameters than those of the pore diameter ranges from 2 to 100 nm. Dv1 and Dv2 can characterize the structure of 2–100 nm adsorption pores, and Dv1 (volume heterogeneity) has a positive correlation with the pore structural parameters such as N2-specific surface area and N2-total pore volume. This parameter can be used to characterize volume heterogeneity of 2–10 nm pores. Dv2 (surface heterogeneity) showed type A > type B > type C and was mainly affected by the metamorphism degree. Ds2 can be used to characterize the pore surface heterogeneity of micropores in the range of 0.62–1.50 nm. This parameter has a good correlation with the pore parameters (CO2-total pore volume, CO2-specific surface area, and average pore size) and is expressed as type C < type B < type A. In conclusion, the heterogeneity of the micropores is less than that of the meso- and macropores (2–100 nm). Dv1, Dv2, and Ds2 can be used as effective parameters to characterize the pore structure of adsorption pores. This result can provide a theoretical basis for studying the pore structure compatibility of coal reservoirs in the region.


Sign in / Sign up

Export Citation Format

Share Document