Research on Tool Cutting Monitoring System Based on Cutting Force and Workpiece Surface Image Texture

2009 ◽  
Vol 16-19 ◽  
pp. 960-964 ◽  
Author(s):  
Peng Wang ◽  
Jing Lei Xin ◽  
Ji Xiang Li ◽  
Shi Wei Yin

Aim at the problem of tool cutting monitoring system between tool wear estimate by gradual information and judgment of tool failure by sharp signal, this study is to construct an integration measurement. It puts forward density parameter E of outline peak of machined surface image texture to estimate tool wear condition. It researches tool failure judgment with cutting force monitoring. Hence real-time monitoring of cutting process can be implemented to represent cutting-tool wear, failure and rationality of parameter selection in cutting state.

2016 ◽  
Vol 836-837 ◽  
pp. 20-28
Author(s):  
Li Min Shi ◽  
Cheng Yang ◽  
Qi Jun Li

Titanium alloy Ti6Al4V has poor machinability, which leads to high unit cutting force and cutting temperature, rapid tool failure. In this study, the effect of the cutting speed, feed rate and cooling condition on cutting force and cutting temperature is critically analysed by turning experiment. At the same time, the relationship is established among tool wear, cutting force and cutting temperature. This investigation has shown that cutting speed is the decisive factor which increasing cutting force and cutting temperature. In the process of turning, tool wear results in high amounts of heat and mechanical stress, which leads to serious tool wear. The Minimal Quantity Lubrication reduces the frictional condition at the chip-tool, decreases cutting force and cutting temperature, and delays the tool failure.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1338
Author(s):  
Lakshmanan Selvam ◽  
Pradeep Kumar Murugesan ◽  
Dhananchezian Mani ◽  
Yuvaraj Natarajan

Over the past decade, the focus of the metal cutting industry has been on the improvement of tool life for achieving higher productivity and better finish. Researchers are attempting to reduce tool failure in several ways such as modified coating characteristics of a cutting tool, conventional coolant, cryogenic coolant, and cryogenic treated insert. In this study, a single layer coating was made on cutting carbide inserts with newly determined thickness. Coating thickness, presence of coating materials, and coated insert hardness were observed. This investigation also dealt with the effect of machining parameters on the cutting force, surface finish, and tool wear when turning Ti-6Al-4V alloy without coating and Physical Vapor Deposition (PVD)-AlCrN coated carbide cutting inserts under cryogenic conditions. The experimental results showed that AlCrN-based coated tools with cryogenic conditions developed reduced tool wear and surface roughness on the machined surface, and cutting force reductions were observed when a comparison was made with the uncoated carbide insert. The best optimal parameters of a cutting speed (Vc) of 215 m/min, feed rate (f) of 0.102 mm/rev, and depth of cut (doc) of 0.5 mm are recommended for turning titanium alloy using the multi-response TOPSIS technique.


Author(s):  
Tao Chen ◽  
Weijie Gao ◽  
Guangyue Wang ◽  
Xianli Liu

Torus cutters are increasingly used in machining high-hardness materials because of high processing efficiency. However, due to the large hardness variation in assembled hardened steel workpiece, the tool wear occurs easily in machining process. This severely affects the machined surface quality. Here, we conduct a research on the tool wear and the machined surface quality in milling assembled hardened steel mold with a torus cutter. The experimental results show the abrasive wear mechanism dominates the initial tool wear stage of the torus cutter. As the tool wear intensifies, the adhesive wear gradually occurs due to the effect of alternating stress and impact load. Thus, the mixing effect of the abrasive and adhesive wears further accelerates tool wear, resulting in occurrence of obvious crater wear band on the rake face and coating tearing area on the flank face. Finally, the cutter is damaged by the fatigue wear mechanism, reducing seriously the cutting performance. With increase of flank wear, moreover, there are increasingly obvious differences in both the surface morphology and the cutting force at the two sides of the joint seam of the assembled hardened steel parts, including larger height difference at the two sides of the joint seam and sudden change of cutting force, as a result, leading to decreasing cutting stability and deteriorating seriously machined surface quality.


Author(s):  
Ishank Arora ◽  
Johnson Samuel ◽  
Nikhil Koratkar

The objective of this research is to study the effect of graphene platelet (GPL) loading on the machinability of epoxy-based GPL composites. To this end, micro-milling experiments are conducted on composites with varying GPL content and their results are contrasted against that of plain epoxy. The material microstructure is characterized using transmission electron microscopy and scanning electron microscopy methods. Chip morphology, cutting force, machined surface morphology, and tool wear, are employed as the machinability measures for comparative purposes. At lower loadings of GPL (0.1% and 0.2% by weight), the deformation of the polymer phase plays a major role; whereas, at a higher loading of 0.3% by weight, the GPL agglomerates and interface-dominated failure dictates the machining response. The minimum chip thickness value of the composites decreases with an increase in GPL loading. Overall, the 0.2% GPL composite has the highest cutting force and the lowest tool wear.


Author(s):  
Shoujin Sun ◽  
Milan Brandt ◽  
Matthew S Dargusch

Variation in the geometric and surface features of segmented chips with an increase in the volume of material removed and tool wear has been investigated at cutting speeds of 150 and 220 m/min at which the cutting tools fail due to gradual flank wear and plastic deformation of the cutting edge, respectively. Among the investigated geometric variables of the segmented chips, slipping angle, undeformed surface length, segment spacing, degree of segmentation and chip width showed the different variation trends with an increase in the volume of material removed or flank wear width, and achieved different values when tool failed at different cutting speeds. However, the chip geometric ratio showed a similar variation trend with an increase in the volume of material removed and flank wear width, and achieved the similar value at the end of tool lives at cutting speeds of both 150 and 220 m/min regardless of the different tool failure modes. Plastic deformation of the tool cutting edge results in severe damage on the machined surface of the chip and significant compression deformation on the undeformed surface of the chip.


Author(s):  
Ishank Arora ◽  
Johnson Samuel ◽  
Nikhil Koratkar

The objective of this research is to study the effect of graphene platelet (GPL) loading on the machinability of epoxy-based GPL composites. To this end, micro-milling experiments are conducted on composites with varying GPL content and their results are contrasted against that of plain epoxy. The material microstructure is characterized using transmission electron microscopy and scanning electron microscopy methods. Chip morphology, cutting force, machined surface morphology, and tool wear, are employed as the machinability measures for comparative purposes. At lower loadings of GPL (0.1% and 0.2% by weight) the deformation of the polymer phase plays a major role, whereas at a higher loading of 0.3% by weight, the GPL agglomerates and interface-dominated failure dictates the machining response. The minimum chip thickness value of the composites decreases with an increase in GPL loading. Overall, the 0.2% GPL composite has the highest cutting force and the lowest tool wear.


2017 ◽  
Vol 95 (5-8) ◽  
pp. 2567-2583 ◽  
Author(s):  
Xuechun Shi ◽  
Xibin Wang ◽  
Li Jiao ◽  
Zhao Wang ◽  
Pei Yan ◽  
...  

2013 ◽  
Vol 471 ◽  
pp. 203-207
Author(s):  
Muhammad Rizal ◽  
Jaharah A. Ghani ◽  
Mohd Zaki Nuawi ◽  
Che Hassan Che Haron

Cutting force is an important signal in machining process and has been widely used for tool condition monitoring. Monitoring the condition of the cutting tool in the machining process is very important to maintain the machined surface quality and consequently reduce inspection costs and increase productivity. This paper utilizes I-kaz-based analysis of cutting force signal to monitor the status of tool wear. The cutting force signals are measured by two channels of strain gauge that were mounted on the surface of tool holder. Experiments were carried out by turning hardened carbon steel and cutting force signals were analyzed using I-kazTM technique by integrating two component of signals (I-kaz 2D, Z2), I-kaz of cutting force (Z of Fy), and I-kaz of feed force (Z of Fx). The results show that I-kaz of feed force can be effectively used to monitor tool wear progression during turning operation.


Sign in / Sign up

Export Citation Format

Share Document