Software Module for a Virtual Anthropomorphic Gripper Preshaping

2012 ◽  
Vol 162 ◽  
pp. 326-333 ◽  
Author(s):  
Constantin Catalin Moldovan ◽  
Ionel Staretu ◽  
Alexandru Mihail Itu

Virtual reality is an important technology in the context of product lifecycle management. Through virtual reality, one offers solutions in the design phase, but also during use, resulting in a significant reduction in time between concept and prototype stage and an overall process optimization increase. Control interfaces of anthropomorphic grippers in virtual environments allow carrying out a series of tests and simulations to validate both a particular design and the configuration of a certain gripping operation. The control interface of an anthropomorphic gripper is also responsible for the connection between the user and the virtual environment providing a set of tools for performing the functional simulation. This paper presents the RoboSIM software module, which is an advanced control interface for a three fingered anthropomorphic gripper. This module was primarily developed for easing the functional simulation of a three fingered gripper in a virtual environment. In order to further decrease the time between concept and prototype, RoboSIM was extended to directly communicate with the real gripper. In this way the functional simulations results can be directly transferred using RoboSIM to the real gripper which will perform the gripping operation accordingly. This novel approach is especially suited for anthropomorphic grippers which are known to have an increased number of degrees of freedom thus their control interfaces becoming very complex.

Robotica ◽  
2009 ◽  
Vol 28 (1) ◽  
pp. 47-56 ◽  
Author(s):  
M. Karkoub ◽  
M.-G. Her ◽  
J.-M. Chen

SUMMARYIn this paper, an interactive virtual reality motion simulator is designed and analyzed. The main components of the system include a bilateral control interface, networking, a virtual environment, and a motion simulator. The virtual reality entertainment system uses a virtual environment that enables the operator to feel the actual feedback through a haptic interface as well as the distorted motion from the virtual environment just as s/he would in the real environment. The control scheme for the simulator uses the change in velocity and acceleration that the operator imposes on the joystick, the environmental changes imposed on the motion simulator, and the haptic feedback to the operator to maneuver the simulator in the real environment. The stability of the closed-loop system is analyzed based on the Nyquist stability criteria. It is shown that the proposed design for the simulator system works well and the theoretical findings are validated experimentally.


2005 ◽  
Vol 32 (5) ◽  
pp. 777-785 ◽  
Author(s):  
Ebru Cubukcu ◽  
Jack L Nasar

Discrepanices between perceived and actual distance may affect people's spatial behavior. In a previous study Nasar, using self report of behavior, found that segmentation (measured through the number of buildings) along the route affected choice of parking garage and path from the parking garage to a destination. We recreated that same environment in a three-dimensional virtual environment and conducted a test to see whether the same factors emerged under these more controlled conditions and to see whether spatial behavior in the virtual environment accurately reflected behavior in the real environment. The results confirmed similar patterns of response in the virtual and real environments. This supports the use of virtual reality as a tool for predicting behavior in the real world and confirms increases in segmentation as related to increases in perceived distance.


2003 ◽  
Vol 12 (4) ◽  
pp. 411-421 ◽  
Author(s):  
Benoit Bideau ◽  
Richard Kulpa ◽  
Stéphane Ménardais ◽  
Laetitia Fradet ◽  
Franck Multon ◽  
...  

Virtual reality offers new tools for human motion understanding. Several applications have been widely used in teleoperation, military training, driving and flying simulators, and so forth. We propose to test if virtual reality is a valid training tool for the game of handball. We focused on the duel between a handball goalkeeper and a thrower. To this end, we defined a pilot experiment divided into two steps: an experiment with real subjects and another one with virtual throwers. The throwers' motions were captured in order to animate their avatar in a reality center. In this paper, we focused on the evaluation of presence when a goalkeeper is confronting these avatars. To this end, we compared the goalkeeper's gestures in the real and in the virtual experiment to determine if virtual reality engendered the same movements for the same throw. Our results show that gestures did not differ between the real and virtual environment. As a consequence, we can say that the virtual environment offered enough realism to initiate natural gestures. Moreover, as in real games, we observed the goalkeeper's anticipation to allow us to use virtual reality in future work as a way to understand the goalkeeper and thrower interactions. The main originality of this work was to measure presence in a sporting application with new evaluation methods based on motion capture.


2021 ◽  
Author(s):  
Ezgi Pelin Yildiz

Augmented reality is defined as the technology in which virtual objects are blended with the real world and also interact with each other. Although augmented reality applications are used in many areas, the most important of these areas is the field of education. AR technology allows the combination of real objects and virtual information in order to increase students’ interaction with physical environments and facilitate their learning. Developing technology enables students to learn complex topics in a fun and easy way through virtual reality devices. Students interact with objects in the virtual environment and can learn more about it. For example; by organizing digital tours to a museum or zoo in a completely different country, lessons can be taught in the company of a teacher as if they were there at that moment. In the light of all these, this study is a compilation study. In this context, augmented reality technologies were introduced and attention was drawn to their use in different fields of education with their examples. As a suggestion at the end of the study, it was emphasized that the prepared sections should be carefully read by the educators and put into practice in their lessons. In addition it was also pointed out that it should be preferred in order to communicate effectively with students by interacting in real time, especially during the pandemic process.


2021 ◽  
Vol 11 (22) ◽  
pp. 10944
Author(s):  
Nikolaos Moustakas ◽  
Andreas Floros ◽  
Emmanouel Rovithis ◽  
Konstantinos Vogklis

At the core of augmented reality audio (ARA) technology lies the ARA mix, a process responsible for the assignment of a virtual environment to a real one. Legacy ARA mix models have focused on the natural reproduction of the real environment, whereas the virtual environment is simply mixed through fixed gain methods. This study presents a novel approach of a dynamic ARA mix that facilitates a smooth adaptation of the virtual environment to the real one, as well as dynamic control of the virtual audio engine, by taking into account the inherent characteristics of both ARA technology and binaural auditory perception. A prototype feature extraction technique of auditory perception characteristics through a real-time binaural loudness prediction method was used to upgrade the legacy ARA mix model into a dynamic model, which was evaluated through benchmarks and subjective tests and showed encouraging results in terms of functionality and acceptance.


Author(s):  
Hannah M. Solini ◽  
Ayush Bhargava ◽  
Christopher C. Pagano

It is often questioned whether task performance attained in a virtual environment can be transferred appropriately and accurately to the same task in the real world. With advancements in virtual reality (VR) technology, recent research has focused on individuals’ abilities to transfer calibration achieved in a virtual environment to a real-world environment. Little research, however, has shown whether transfer of calibration from a virtual environment to the real world is similar to transfer of calibration from a virtual environment to another virtual environment. As such, the present study investigated differences in calibration transfer to real-world and virtual environments. In either a real-world or virtual environment, participants completed blind walking estimates before and after experiencing perturbed virtual optic flow via a head-mounted virtual display (HMD). Results showed that individuals calibrated to perturbed virtual optic flow and that this calibration carried over to both real-world and virtual environments in a like manner.


2021 ◽  
Author(s):  
Juan Ribeiro Reis ◽  
Thiago Sousa de Oliveira ◽  
Wesley Lopes de Oliveira ◽  
Diego Cordeiro Barboza ◽  
Leonildes Soares De Melo ◽  
...  

Abstract Human exposure is a relevant factor when operating in critical environments and depends on a thorough analysis and consideration towards driving the teams to a safer and more productive environment. Reducing such exposure through digital technologies benefits the whole workforce in their decisions and maneuvers, like simulations, training, and other critical activities that can be executed remotely and prior to the actual activity. This paper presents a case study to demonstrate how augmented and virtual reality can be used to create a high fidelity virtual environment emulating the real industrial facility. This approach enriches the Digital Twin with the association of data and the virtual environment. It leverages on display and interaction capabilities of hardware devices, and intelligence and data querying capabilities of industrial software, empowering the workers with enhanced training capabilities and access to information increasing safety and efficiency. A real application of this technology is presented in this paper through the case study of the PredictMain4.0 project of Repsol Sinopec Brazil (RSB), which aimed at the integration of digital technologies, including augmented reality (AR) and virtual reality (VR). The PredictMain4.0 project was executed using data and data models of PETROBRAS’ P-50, a FPSO (Floating Production Storage and Offloading) operating in Brazil, and illustrates how different AR/VR applications can be developed and used in combination with engineering, operation, and maintenance databases. This includes 3D models, digitalized critical procedures, and the ability to integrate field teams into a single virtual environment, allowing real interaction in a digital setting that is linked to the real world. Considering the digitalized procedures, this paper aims to establish how virtual simulation and training can make teams more confident and prepared to execute the same physical asset procedures. After consulting with stakeholders from many different teams, the PredictMain4.0 project team selected three critical operating modules in the FPSO (Power Generation, Water Injection, and Gas Compression). For each one, considered which situations were relevant, should they occur. These situations led to developing a training and simulation framework, allowing instructors to create different scenarios and use advanced features such as digital measurement, real-time data collection, and collaborative sessions. The case study indicates that the development of such applications can save more than $1 million per year in maintenance costs considering the decrease in downtime and avoiding risks of accident.


2020 ◽  
Vol 36 (10-12) ◽  
pp. 1937-1949
Author(s):  
Simon Kloiber ◽  
Volker Settgast ◽  
Christoph Schinko ◽  
Martin Weinzerl ◽  
Johannes Fritz ◽  
...  

Abstract With the rise of virtual reality experiences for applications in entertainment, industry, science and medicine, the evaluation of human motion in immersive environments is becoming more important. By analysing the motion of virtual reality users, design choices and training progress in the virtual environment can be understood and improved. Since the motion is captured in a virtual environment, performing the analysis in the same environment provides a valuable context and guidance for the analysis. We have created a visual analysis system that is designed for immersive visualisation and exploration of human motion data. By combining suitable data mining algorithms with immersive visualisation techniques, we facilitate the reasoning and understanding of the underlying motion. We apply and evaluate this novel approach on a relevant VR application domain to identify and interpret motion patterns in a meaningful way.


Author(s):  
R. I. Dremlyuga ◽  
A. V. Kripakova

The paper is devoted to the problems of committing crimes using virtual reality technologies and their qualifications. The optional features of the objective side and their significance when using new digital technologies are characterized. The factors complicating the investigation of such crimes are analyzed in detail. According to the results of the study, the authors come to the conclusion that the technology of virtual reality gives a criminal completely new opportunities. First, virtual reality allows you to manipulate the emotions and consciousness of the victim at a completely new level. The psycho-emotional effect is comparable in strength to the effect of events in the real world, at the same time it can be achieved remotely via the Internet. Secondly, in connection with the integration into the virtual environment of real-world devices, the consequences of actions in virtual reality also extend to the real world. This means that many criminal acts for which contact with the victim was necessary can now be performed remotely.


Sign in / Sign up

Export Citation Format

Share Document