Mechatronic Concepts in Design and Control of a Teleoperated Robot

2012 ◽  
Vol 162 ◽  
pp. 575-582 ◽  
Author(s):  
Ciprian Lapusan ◽  
Vistrian Maties ◽  
Olimpiu Hancu ◽  
Ciprian Rad

The article proposes a new mechatronic integrated design approach for a robotic system. The proposed method uses modern methods like model based design, rapid control prototyping and hardware in the loop simulations in the development process. Using this method a six DOF teleoperated parallel robot is developed, the results are presented in the paper.

Author(s):  
M. M. Nageb ◽  
A. A. El-Samahy ◽  
M. A. Rady ◽  
A. M. A. Amin ◽  
R. H. Abd El-Hamid ◽  
...  

In a central receiver solar power plant, heliostats are arranged with respect to the central receiver so as to reflect the rays from the sun onto the power tower with high precision by tracking the sun in both the azimuth and elevation directions. The master control system of a solar power plant consists of different levels. The first level is local control; it takes care of the positioning of the heliostats when the aiming point and the time are given to the system, and informs upper level about the status of the heliostats field. The second logic level makes some important dispatch calculations of heliostats field. The most popular linear two-axis local driving system of heliostat consists of two linear driving actuators, the driving mechanism with rotary joints, and the controller. Traditional methods for heliostat design are often based on a sequential approach in which the mechanical structure is designed first and then the control system is advised. In order to reach the optimal design of heliostats, an integrated design approach that concurrently considers the interactions between the mechanical and control subsystems is necessary. In this article, an integrated design methodology of heliostat drive system is presented. The methodology is based on modeling and simulation. The dynamic models that describe the behavior of the mechanical and control components are presented. These models involve mechanical and control design variables such as the motor parameters, power screw (including back lash), heliostat mass, load forces, and wind forces. Matlab, Solidwork, and Simulink are chosen to apply PID tracking control to heliostats, due to the ability to arbitrarily model complex mechanical systems, directly import properly constructed, third-party 3D CAD models, simulate integrated control, handle a variety of robotics nomenclature, and other features. The present methodology is employed for integrated design of a single facet small size heliostat with mirror area of 3 m2.The methods described in this article also show a way to rapidly simulate novel and complex heliostat geometries. Analysis of the heliostat drive system performance and dynamic characteristics according to mechanical and control design variables is conducted for the purpose of control system design and performance optimization. The drive system performance is evaluated in terms of positioning tracking errors, system response, and control system behavior. It is shown that the mechanical characteristics of the ball power screw actuator such as ball-screw diameter, lead, overall flexibility, stiffness, backlash, and inertia significantly influence the performance of drive system.


Robotica ◽  
2005 ◽  
Vol 24 (2) ◽  
pp. 173-181 ◽  
Author(s):  
Qing Li

Due to the demands from the robotic industry, robot structures have evolved from serial to parallel. The control of parallel robots for high performance and high speed tasks has always been a challenge to control engineers. Following traditional control engineering approaches, it is possible to design advanced algorithms for parallel robot control. These approaches, however, may encounter problems such as heavy computational load and modeling errors, to name it a few. To avoid heavy computation, simplified dynamic models can be obtained by applying approximation techniques, nevertheless, performance accuracy will suffer due to modeling errors. This paper suggests applying an integrated design and control approach, i.e., the Design For Control (DFC) approach, to handle this problem. The underlying idea of the DFC approach can be illustrated as follows: Intuitively, a simple control algorithm can control a structure with a simple dynamic model quite well. Therefore, no matter how sophisticate a desired motion task is, if the mechanical structure is designed such that it results in a simple dynamic model, then, to design a controller for this system will not be a difficult issue. As such, complicated control design can be avoided, on-line computation load can be reduced and better control performance can be achieved. Through out the discussion in the paper, a 2 DOF parallel robot is redesigned based on the DFC concept in order to obtain a simpler dynamic model based on a mass-balancing method. Then a simple PD controller can drive the robot to achieve accurate point-to-point tracking tasks. Theoretical analysis has proven that the simple PD control can guarantee a stable system. Experimental results have successfully demonstrated the effectiveness of this integrated design and control approach.


Robotica ◽  
2013 ◽  
Vol 31 (6) ◽  
pp. 887-904 ◽  
Author(s):  
M. H. Korayem ◽  
M. Bamdad ◽  
H. Tourajizadeh ◽  
A. H. Korayem ◽  
R. M. Zehtab ◽  
...  

SUMMARYIn this paper, design, dynamic, and control of the motors of a spatial cable robot are presented considering flexibility of the joints. End-effector control in order to control all six spatial degrees of freedom (DOFs) of the system and motor control in order to control the joints flexibility are proposed here. Corresponding programing of its operation is done by formulating the kinematics and dynamics and also control of the robot. Considering the existence of gearboxes, flexibility of the joints is modeled in the feed-forward term of its controller to achieve better accuracy. A two sequential closed-loop strategy consisting of proportional derivative (PD) for linear actuators in joint space and computed torque method for nonlinear end-effector in Cartesian space is presented for further accuracy. Flexibility is estimated using modeling and simulation by MATLAB and SimDesigner. A prototype has been built and experimental tests have been done to verify the efficiency of the proposed modeling and controller as well as the effect of flexibility of the joints. The ICaSbot (IUST Cable-Suspended robot) is an under-constrained six-DOF parallel robot actuated by the aid of six suspended cables. An experimental test is conducted for the manufactured flexible joint cable robot of ICaSbot and the outputs of sensors are compared with simulation. The efficiency of the proposed schemes is demonstrated.


Author(s):  
Ke Fu ◽  
James K. Mills

Comparing to the traditional sequential design approach, the integrated structure and control design approach integrates the mechanical structure design and the control system design by formulating the design as an optimization problem. This paper investigates two important questions pertaining to the integrated structure and control design approach: Why and when should the integrated design approach be used rather than the traditional sequential design approach? In this paper, we have formulated both approaches as optimization problems. The benefit of the integrated design approach over the sequential design approach is proved in this paper. The conditions for when the integrated design approach will result in better closed-loop system performances are also given. A simple example is given to illustrate the theoretical results derived. The conclusion is given following this example and the simulation results are shown at the end of the paper.


2011 ◽  
Vol 130-134 ◽  
pp. 347-352
Author(s):  
Jing Tao Lei

This paper presented model-based integrated design technology for configuration design of modular 3-PRS parallel robot. The kinematics screws matrix and constraint screws matrix of the end effector were obtained based on screw theory, the constraints of the end effector were analyzed and the degree of freedom of the robot can be determined. The forward kinematics of the parallel robot was analyzed according to the geometric relationship of a kinematics chain. Three-dimension solid model of the parallel robot was designed. Afterwards, the co-simulation of the mechanical and control system of the parallel robot was studied by applying virtual prototype technology to optimize the parameters of mechanical structure and control system. The simulation results of kinematics and dynamics can be obtained, which will offer basis for developing the prototype system.


Sign in / Sign up

Export Citation Format

Share Document