Field Monitoring and Numerical Simulation Study on Mechanical Characteristics of Extra-Long Highway Tunnel

2012 ◽  
Vol 170-173 ◽  
pp. 1450-1454
Author(s):  
Xun Li ◽  
Chuan He ◽  
Guo Wen Xu

Taking Motianling tunnel in Chongqing as an engineering background, the monitoring and measurement scheme is proposed for the extra-long tunnel under complex condition, and the field data and the numerical simulation results is analyzed. The results indicates that, the selected cross-section reflect overall state of the Motianling tunnel, and the structure safety monitoring during operation is considered; by tunnel internal and external observation, it is found that the tunnel face in F22 fault zone may not stay stability, because the monitoring information receive feedback timely, and the supporting measures is proper, the surrounding rock stay stability when excavating; for the typical section, the surrounding rock contact pressure is greater than interlayer pressure, primary lining sustains most of the load ,and the secondary lining plays an assistant role as safety reservation; the maximum of anchor axial force and surrounding rock pressure occur at tunnel crown. By monitoring and numerical simulation, the dynamic excavation and design is realized, the Motianling tunnel is achieved safely and successfully at last.

2021 ◽  
Vol 272 ◽  
pp. 02013
Author(s):  
Kun Wang ◽  
Shun Yu ◽  
Yong Pan ◽  
Lushi Wang

The setting of circumferential distance of system anchor rod in highway tunnel is related to the safety of tunnel structure, and also affects the project cost. The “code for design of highway tunnels” issued in 2018 also adjusted the circumferential spacing arrangement of the system bolts of the tunnel. Based on a highway tunnel project, the circumferential spacing of system bolts in deep buried section of grade V surrounding rock is adjusted from 0.8m to 1.2m, and the numerical simulation and comparative analysis before and after the optimization of bolt spacing are carried out. The field monitoring and measurement data show that the surrounding rock deformation after adjustment has little effect, and the cavern is stable as a whole, which can guide the optimization implementation of subsequent sections.


2013 ◽  
Vol 438-439 ◽  
pp. 949-953
Author(s):  
Hao Bo Fan ◽  
Jin Xing Lai ◽  
Dan Dan Hou

This paper based on Chaoyang tunnel by bench method excavation, using the finite element numerical simulation method, simulates the surrounding rock displacement of soft rock tunnel and the stress characteristics of supporting structure to get the various stages of tunnel surrounding rock stress, strain and the internal force changes of tunnel supporting structure. After the analyses of the numerical simulation results and field monitoring measurement data, the safety and rationality of the method are determined. The research provides certain reference for highway tunnel design and construction.


2020 ◽  
Vol 2020 ◽  
pp. 1-20 ◽  
Author(s):  
Tong Liu ◽  
Yujian Zhong ◽  
Zhihua Feng ◽  
Wei Xu ◽  
Feiting Song ◽  
...  

As a typical granular bulk medium, problems are common in boulder-cobble mixed grounds, such as easy collapse and instability and difficult effective support for large-section tunnel excavation. Tunnels constructed in BCM grounds are rare still, and there is a big gap between the design and construction of tunnels. Based on the Nianggaicun highway tunnel crossing the BCM grounds, the construction technology of tunnel in BCM grounds is studied by means of literature investigation and field survey. Here are the main conclusions: the overall deformation of surrounding rock is quite small; the pressure distribution of surrounding rock is small and loose pressure is dominant, and the safety reserve of secondary lining is large. The deformation process of surrounding rock concentrates on the construction stage. During the construction process, there are many problems, such as serious overexcavation, difficulty of bolt penetration, and continuous rock fall. In this paper, a three-bench complementary cyclic excavation method is proposed, which replaces the original CD and CRD methods. Meanwhile, the supporting system is optimized. The results show that the disturbance of surrounding rock is reduced, while the safety of construction process and the reliability of structure are increased. The new excavation method and optimized supporting system are expected to fill the gap between design and construction of tunnel in BCM grounds and provide reference for construction of such tunnels in the future.


2019 ◽  
Vol 9 (24) ◽  
pp. 5514 ◽  
Author(s):  
Cong Liu ◽  
Limin Peng ◽  
Mingfeng Lei ◽  
Chenghua Shi ◽  
Ning Liu

The Haoji railway in China is the longest heavy haul railway in the world, including 235 tunnels located along the 1837 km railway. With the increasing axle load of the new line and the basal deterioration of the existing heavy haul railway in China, studying the fatigue performance of the newly designed tunnel structure is essential. To study the coupling effect of the surrounding rock pressure and 30 t axle load train, in this study, we combined three-dimensional numerical simulation and three-point bending fatigue tests to investigate the fatigue performance of the basal structures. The results of numerical simulation indicate that the center of the inverted arch secondary lining is the position vulnerable to fatigue in the lower tunnel structures; the surrounding rock pressure performance exerts a stronger influence on the stress state of the vulnerable position than the dynamic train loads. The S–N formula obtained from the experiment showed that the fatigue life of tunnel bottom structures decreases with increasing surrounding rock pressure and dynamic load. In typical grade V surrounding rock and 30 t axle loads, fatigue failure will not occur in the newly designed tunnel bottom structures within 100 years if bedrock defects are lacking and pressure of surrounding rock is not excessive.


2015 ◽  
Vol 724 ◽  
pp. 185-191 ◽  
Author(s):  
Yue Huang ◽  
Jun Shu Kou ◽  
Hai Bo Fang ◽  
Ming Liang Li ◽  
Yan Liang

With the vigorous development of China's highway construction, more and more stability problems of loose circle occurred in tunnel project, the deformation characteristics and distribution range of rock loose circle is very complex, which is of urgent need to further study. Based on geological data and construction program of Xi Shi slope tunnel, using the combined method of elastoplastic theoretical calculations and FLAC3D numerical simulation to analyze the distribution range of highway tunnel surrounding rock loose circle, and comparing it with the results of the measurements of surrounding rock deep displacement, thus, it is on the conclusion that grade IV rock loose circle of Xi Shi slope tunnel is in the range between 2.0 to 3.0m. Verifing the reliability of the method, and providing a strong guarantee for the design of support parameters.


2013 ◽  
Vol 353-356 ◽  
pp. 1693-1698
Author(s):  
Zhen Xing Yang ◽  
Liang Song ◽  
Hao Wang ◽  
Yu Yong Jiao ◽  
Shu Cai Li ◽  
...  

In this paper, the mechanical behavior of excavation and support construction of Weishe tunnel, which is a section of the Yangwu expressway, is studied quantitatively using 3D finite difference numerical simulation method. A sequential excavation method is used and the results show that the vault settlement occurs mainly on the phase of upper bench excavation. The convergences of upper and lower sidewalls occur mainly on the phase of lower bench excavation. During the construction, the surrounding rock pressure in the vault and sidewall of the tunnel decrease. Axial force of anchor reaches the maximum value after the finish of second lining. However, the surrounding rock pressure and internal force of steel arch reach the maximum value after completing the upper bench excavation, and then become as smaller as half of the peak value during the lower bench excavation.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Ruofei Zhang ◽  
Guangming Zhao ◽  
Xiangrui Meng ◽  
Jian Sun ◽  
Wensong Xu ◽  
...  

To address the prominent status of great deformation and difficult maintenance of the roadway under high stresses, this study investigated the mechanical characteristics of surrounding rocks and bearing structural stability in a roadway under adjustment and redistribution of stresses through theoretical analysis, numerical simulation, and engineering field test. Stability forms of the bearing structure of roadway surrounding rocks were analyzed by using the axis-changing theory from the perspectives of surrounding rock, mechanical properties of roadways, surrounding rock stress distribution, and mechanical mechanism of the bearing structure. It is suggested that the surrounding rock stress distribution state is improved and the bearing structure is optimized through unloading and reinforcement construction. A mechanical model of roadway excavation was constructed to analyze the influences of excavation spatial effect on the stress releasing and bearing structure of surrounding rocks. A rock postpeak strain softening and dilatation model was introduced to investigate the mechanical characteristics of the surrounding rock mass in the rupture residual zone and plastic softening zone in a roadway. Moreover, we analyzed the influences of unloading and reinforcement construction on the stress path and mechanical characteristics of the rock unit model, which disclosed the adjustment mechanism of the bearing structure of surrounding rocks by the failure development status of rocks. A numerical simulation on the distribution of surrounding rock stress fields and adjustment features of the bearing structure after roadway excavation and unloading and reinforcement construction was carried out by using the FLAC3D program. Results demonstrate that the unloading construction optimizes the axial ratio of spatial excavation in a roadway and the reinforcement zones on both sides are the supporting zones of the bearing structure. Moreover, the ratio between the distance from two side peaks to the roadway sides and the distance from the roof and floor peaks to the excavation space is equal to the coefficient of horizontal pressure. In other words, the final collapse failure mode of surrounding rock is that the long axis of the excavation unloading space points to the same direction with the maximum principal stress of the primary rock. Reinforcement forces the surrounding rocks to form a “Ω-shaped” bearing structure, which is in favor of the long-term maintenance of the roadway.


2011 ◽  
Vol 413 ◽  
pp. 454-458
Author(s):  
Xin Zhi Li ◽  
Shu Cai Li ◽  
Ying Yong Li ◽  
Shu Chen Li

The surrounding rock pressure which was determined effectively through in-situ monitoring was the important parametric of the tunnel engineering design.According to in-situ monitoring of the surrounding rock pressure in the relied engineering . The adjustment and distribution characteristics of surrounding rock pressure of the shallow large-span tunnel with three-level seven-step parallel tunnel excavation was studied, the results showed that the arch and sides of the tunnel arch foot were the key parts which concentrated the surrounding rock pressure. The adjustment and distribution of surrounding rock pressure had not obvious relationships with tunnel face distance. Finally, the composite factors that impacted monitoring results of the surrounding rock pressure was analysed. The results had great significance on the development and perfection of the surrounding rock pressure theory in shallow large-span tunnel.


2014 ◽  
Vol 884-885 ◽  
pp. 675-678
Author(s):  
Xin Zhe Li ◽  
Geng Feng Wang ◽  
Xin Liang Li ◽  
Zhong Rong Zhu

Taking Jin Chuan phyllite tunnel as the research object, and based on numerical simulation of surrounding rock graded III, IV and V, the paper studied the stress characteristics of initial support and four other representative locations such as two arch vault, arch spandrel, arch haunch, and arch foot during and after the process of construction. The paper focuses on the stress characteristics of secondary lining in different locations after stability and the change of stress in different locations of initial lining before and after the secondary lining construction.


Sign in / Sign up

Export Citation Format

Share Document