A Redundancy Design Schema of Distributed Real-Time Database Applied in ISCS

2012 ◽  
Vol 174-177 ◽  
pp. 2142-2146
Author(s):  
Jun Wei Du ◽  
Wei Qiang Chen ◽  
Zhong Zhu ◽  
Xin Liu ◽  
Si Jun Wan ◽  
...  

Reliability is one of the most important properties of integrated supervisory and control system (ISCS) in metro. Redundancy technology, a fault tolerant mechanism, can significantly improve ISCS reliability. This paper introduces a redundancy design schema and its implementation in distributed real-time database, which is the kernel part of ISCS, Including upstream and downstream data redundancy processing technology, fault detection and redundancy switch technology. The result shows that this schema is feasible and reasonable.

Algorithms ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 97
Author(s):  
Song Zheng ◽  
Chao Bi ◽  
Yilin Song

This paper presents a novel diagonal recurrent neural network hybrid controller based on the shared memory of real-time database structure. The controller uses Data Engine (DE) technology, through the establishment of a unified and standardized software architecture and real-time database in different control stations, effectively solves many problems caused by technical standard, communication protocol, and programming language in actual industrial application: the advanced control algorithm and control system co-debugging difficulties, algorithm implementation and update inefficiency, and high development and operation and maintenance costs effectively fill the current technical gap. More importantly, the control algorithm development uses a unified visual graphics configuration programming environment, effectively solving the problem of integrated control of heterogeneous devices; and has the advantages of intuitive configuration and transparent data processing process, reducing the difficulty of the advanced control algorithms debugging in engineering applications. In this paper, the application of a neural network hybrid controller based on DE in motor speed measurement and control system shows that the system has excellent control characteristics and anti-disturbance ability, and provides an integrated method for neural network control algorithm in a practical industrial control system, which is the major contribution of this article.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1104
Author(s):  
Shin-Yan Chiou ◽  
Kun-Ju Lin ◽  
Ya-Xin Dong

Positron emission tomography (PET) is one of the commonly used scanning techniques. Medical staff manually calculate the estimated scan time for each PET device. However, the number of PET scanning devices is small, the number of patients is large, and there are many changes including rescanning requirements, which makes it very error-prone, puts pressure on staff, and causes trouble for patients and their families. Although previous studies proposed algorithms for specific inspections, there is currently no research on improving the PET process. This paper proposes a real-time automatic scheduling and control system for PET patients with wearable sensors. The system can automatically schedule, estimate and instantly update the time of various tasks, and automatically allocate beds and announce schedule information in real time. We implemented this system, collected time data of 200 actual patients, and put these data into the implementation program for simulation and comparison. The average time difference between manual and automatic scheduling was 7.32 min, and it could reduce the average examination time of 82% of patients by 6.14 ± 4.61 min. This convinces us the system is correct and can improve time efficiency, while avoiding human error and staff pressure, and avoiding trouble for patients and their families.


Author(s):  
Sachin S Junnarkar ◽  
Jack Fried ◽  
Sudeepti Southekal ◽  
Jean-Francois Pratte ◽  
Paul O'Connor ◽  
...  

2013 ◽  
Vol 773 ◽  
pp. 148-153 ◽  
Author(s):  
Juan Zhou ◽  
Bing Yan Chen ◽  
Meng Ni Zhang ◽  
Ying Ying Tang

Aiming at the management problem of real-time data created while intelligent solar street lamps working, sectional data acquisition and control system based on internet of things is introduced in the paper. Communication protocol with unified form and flexible function is designed in the system, and communication address is composed of sectional address and subsection address. Three-level data structure is built in the polling algorithm to trace real-time state of lamps and to detect malfunction in time, which is suitable for sectional lamps management characteristics. The system reflects necessary statistic data and exception information to remote control centre through GPRS to short interval expend on transmission and procession and save network flow and system energy. The result shows the system brings improved management affection and accords with the idea of energy-saving and environmental protection.


Sign in / Sign up

Export Citation Format

Share Document