Application of Sulfoaluminate Cement for Solidification/Stabilization of Fly Ash from Municipal Solid Waste Incinerators

2012 ◽  
Vol 178-181 ◽  
pp. 795-798 ◽  
Author(s):  
Qi Na Sun ◽  
Jing Miao Li ◽  
Bao Quan Huo ◽  
Ji Bing Wang

Sulfoaluminate cement (SAC) was utilized for the solidification/stabilization of fly ash from municipal solid waste (MSW) incinerators. The effects of fly ash amount and water/binder ratio were investigated on compressive strength and heavy metals leaching toxicity of solidified matrices at different curing times. The results showed that prolonged curing time, lower fly ash amount and water/binder ratio enhanced the compressive strength and decreased the leaching concentrations of Zn, Pb and Cu. For 28 days cured matrices with fly ash amount 50% and water/binder ratio 0.30, the compressive strength was 32.6 MPa and the leaching concentrations of Zn, Pb and Cu were 14.73, 0.75 and 0.43 mg/L respectively. The leaching concentrations of Zn, Pb and Cu met the demand of GB 5085.3-2007. SAC is proved to be effective for MSW incinerator fly ash solidification/stabilization and high performance matrices for disposal and reuse may be achieved with further formula optimization.

2013 ◽  
Vol 859 ◽  
pp. 52-55 ◽  
Author(s):  
Yong Qiang Ma

A great deal of experiments have been carried out in this study to reveal the effect of the water-binder ratio and fly ash content on the workability and strengths of GHPC (green high performance concrete). The workability of GHPC was evaluated by slump and slump flow. The strengths include compressive strength and splitting tensile strength. The results indicate that the increase of water-binder ratio can improve the workability of GHPC, however the strengths of GHPC were decreased with the increase of water-binder ratio. When the fly ash content is lower than 40%, the increase in fly ash content has positive effect on workability of GHPC, while the workability begins to decrease after the fly ash content is more than 40%. The addition of fly ash in GHPC has adverse effect on the strengths, and there is a tendency of decrease in the compressive strength and splitting tensile strength of GHPC with the increase of fly ash content.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3148 ◽  
Author(s):  
Hongyan Chu ◽  
Fengjuan Wang ◽  
Liguo Wang ◽  
Taotao Feng ◽  
Danqian Wang

Ultra-high-performance concrete (UHPC) has received increasing attention in recent years due to its remarkable ductility, durability, and mechanical properties. However, the manufacture of UHPC can cause serious environmental issues. This work addresses the feasibility of using aeolian sand to produce UHPC, and the mix design, environmental impact, and mechanical characterization of UHPC are investigated. We designed the mix proportions of the UHPC according to the modified Andreasen and Andersen particle packing model. We studied the workability, microstructure, porosity, mechanical performance, and environmental impact of UHPC with three different water/binder ratios. The following findings were noted: (1) the compressive strength, flexural strength, and Young’s modulus of the designed UHPC samples were in the ranges of 163.9–207.0 MPa, 18.0–32.2 MPa, and 49.3–58.9 GPa, respectively; (2) the compressive strength, flexural strength, and Young’s modulus of the UHPC increased with a decrease in water/binder ratio and an increase in the steel fibre content; (3) the compressive strength–Young’s modulus correlation of the UHPC could be described by an exponential formula; (4) the environmental impact of UHPC can be improved by decreasing its water/binder ratio. These findings suggest that it is possible to use aeolian sand to manufacture UHPC, and this study promotes the application of aeolian sand for this purpose.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 141
Author(s):  
Zhengzhen Yao ◽  
Zhonghui Xu ◽  
Qin Shuai ◽  
Xiaoyue Chen ◽  
Zao Jiang ◽  
...  

This study aims to explore the solidification performance of municipal solid waste incineration fly ash (MSWIFA) through co-mechanical treatment with circulation fluidized bed combustion fly ash (CFBCFA). The mineral characterization, physical properties, and leaching resistance of the solidified bodies are investigated by X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FT-IR), Thermogravimetry-differential thermal analysis (TG-DTA), compressive strength, porosity, and leaching test, respectively. C–S–H, ettringite (AFt), and Friedel’s salt (FS) are the predominant hydrate products in the CFBCFA based solidified bodies, which are similar to the cement based solidified bodies. However, CFBCFA based solidified bodies exhibit higher compressive strength (36.7 MPa) than cement based solidified bodies (11.28 MPa), attributing to the three reasons: lower porosity and more compact internal structure of CFBCFA based solidified bodies; large amounts of Ca(OH)2 originating from MSWIFA are conducive to promoting the hydration reaction extent and compressive strength of the CFBCFA based solidified bodies; excessive Ca(OH)2 would cause compressive strength deterioration for the cement based solidified bodies. The heavy metals (Zn, Cu, Cr, Cd, and Pb) concentrations in the extraction solution of the CFBCFA based solidified bodies are far below the requirements of Chinese National Standard GB 5085.3-2007. The solidification of MSWIFA through co-mechanical treatment could be an ideal substitute for cement solidification technology.


2012 ◽  
Vol 531 ◽  
pp. 292-295
Author(s):  
Hai Ying Zhang ◽  
Guo Liang Yuan ◽  
Guo Xian Ma

The characteristics and leaching behavior of heavy metals in fly ash, sampled from one MSWI (municipal solid waste incineration) plant in Shanghai China, were investigated. The results indicated that the main elements of fly ash were Fe, K, Na, Cl, Si, Ca, Al, and the total fraction of heavy metals was in the range of 0.8 % - 2.0%. Hence, MSWI fly ash was considered to be one kind of hazardous waste due to its potential environmental risk. Leaching toxicity was performed on fly ash samples from the MSWI plant in Shanghai China. Leaching toxicity of the heavy metals by the ALT (available leaching toxicity) procedure exceeded that by the HVEP (horizontal vibration extraction procedure) standard. Leaching concentrations of Ni, Zn, Cd and Pb exceeded the limit of hazardous waste identification standard. Hence, fly ash is a hazardous waste.


2017 ◽  
Vol 7 (2) ◽  
pp. 53-65
Author(s):  
Su Wai Hnin ◽  
Pakawat Sancharoen ◽  
Somnuk Tangtermsirikul

The aim of this paper is to investigate the effects of mix proportion on electrical resistivity of concrete with fly ash. The electrical resistivity of concrete is measured by using four Wenner probes. The varied parameters in this study were water/binder ratio, fly ash content, and paste content. Electrical resistivity of water-saturated concrete at several different ages was studied and compared with compressive strength and rapid chloride penetration. Based on experimental results, a good relationship was obtained between results of compressive strength and rapid chloride penetration with electrical resistivity of concrete. The results of this study can be applied further to predict electrical resistivity of concrete when mix proportions are provided. According to the results, lower water/binder ratio concrete had higher resistivity than those with higher water/binder ratios. When cement was replaced at 40% by fly ash, electrical resistivity increased four times when compared to that of OPC concrete.


2016 ◽  
Vol 258 ◽  
pp. 587-590
Author(s):  
Aneta Nowak-Michta

Effect of quantity and quality of fly ash and compressive strength of concretes with their addition on abrasion resistance previously subjected to scaling is analyzed in the paper. The abrasion resistance was measured in Böhme test according to EN 1338: 2005. The cement was replaced with 20, 35, and 50% of Class F siliceous fly ash in three categories of losses on ignition A, B and C by mass. The water-binder ratio, the air-entrainment and the workability of mixtures were maintained constant at 0.38, 4,5% and 150 mm respectively.Prior scaling causes a decrease in abrasion resistance of fly ash concretes. In addition, both quantitative and qualitative fly ash parameters and compressive strength have an influence on abrasion damage.


Sign in / Sign up

Export Citation Format

Share Document