Study on the Motion Generation Method of Gun Training Simulator

2012 ◽  
Vol 182-183 ◽  
pp. 1673-1680
Author(s):  
Yu Wang ◽  
Ri Na Su

A kind of 3-RPS and 3-DOF parallel robotic mechanisms is used as motion-sensible-platform of gun training simulator to implement the motion simulation. Its dynamics is analyzed and driving force of joint is gained. This paper introduces the study on motion generation of gun training simulator. The moving model of gun is established on the basis of the model of vehicle. We solve the pose of gun by applying the theory of homogeneous matrix. In order to ensure actuators moving at a preset speed and enable the motion-sensible-platform to perform a real-time moving posture simulation of a wheeled gun vehicle in running, the speed equation of actuator is given. The feasibility of models was tested through the simulation experiments. All of these works are beneficial to optimize design and control realization of motion platform structure.

Author(s):  
Ming-Shyan Wang ◽  
Jing Lee ◽  
Jian-Hao Chen

The paper introduces a motion simulation, monitoring, and controlling system based on a three-degree-of-freedom (3DOF) motion platform, stereographic display, and network communication. Proportional-integral-derivative (PID) and fuzzy logic (FL) controllers are applied to control the motion platform and to compare their control qualities with each other. Two applications of the present system are demonstrated. One is a car simulator, in which the motion platform simulates the behaviour of a car running on the road. The other one is an animated virtual reality (VR) remote control system. By cooperating with real-time virtual scene reconstruction, users can remotely monitor and control the motion platform in real-time.


Author(s):  
A Rouvinen ◽  
T Lehtinen ◽  
P Korkealaakso

Real-time simulators have become more popular in the field of user training. This is due to the possibility to give basic training and knowledge of machines and their operation environment to the operator even when the machine is not actually present. The use of simulators instead of actual machines has several advantages. First of all, the available machine capacity is not tied to training and can be used in productive work. Secondly, using a simulator helps to avoid accidents that may occur using real machines. Using a simulator also enables different environmental aspects, such as lighting conditions, fog, wind, and so on, to be taken into account in the training of all operators alike. Real-time training simulators are complicated machine systems, which consist of a user interface, an I/O-system, a real-time simulation model describing the dynamics of the machine in question and its connections to the environment, a visualization of the operational environment, and a possible motion platform. The user interface is usually taken directly from the simulated machine. Consequently, the user has the possibility to become familiar with the operating interface in an early phase of training. In this article, the development of a gantry crane operator-training simulator, including all the earlier mentioned components, is presented. The aim of this article is to present an example of methods used in the development of the separate areas of a training simulator.


2012 ◽  
Vol 190-191 ◽  
pp. 1311-1316 ◽  
Author(s):  
Jin Sha ◽  
Zhi Yuan Yao ◽  
Ran Ran Geng

During the experiment of cell poking, it is required that the point of a probe is aimed at the cell with the help of a precision motion platform, and then, controlled by this motion platform, the tip of the probe pokes into the cell. When these operations are done, the driving force of this platform will be removed. But within a certain period (for example, an hour), the platform doesn’t stop moving. This kind of movement, which should be only several microns, is termed in this paper as the mechanical drift of ultrasonic linear motors. Experiments show that the forms used for clamping the stator is one of the factors that affect the mechanical drift. It is studied through experiments the impacts of several clamping forms on mechanical drift, the drift value’s relationship with the slide rail’s damping and the motor’s step size, and how the drift direction is related to the motion direction. The mechanism of mechanical drift of ultrasonic linear motors has also been explored preliminarily. This kind of research will facilitate refinements of the design and control methods for ultrasonic linear motor as well as motion platforms.


Author(s):  
R. Rajesh ◽  
R. Droopad ◽  
C. H. Kuo ◽  
R. W. Carpenter ◽  
G. N. Maracas

Knowledge of material pseudodielectric functions at MBE growth temperatures is essential for achieving in-situ, real time growth control. This allows us to accurately monitor and control thicknesses of the layers during growth. Undesired effusion cell temperature fluctuations during growth can thus be compensated for in real-time by spectroscopic ellipsometry. The accuracy in determining pseudodielectric functions is increased if one does not require applying a structure model to correct for the presence of an unknown surface layer such as a native oxide. Performing these measurements in an MBE reactor on as-grown material gives us this advantage. Thus, a simple three phase model (vacuum/thin film/substrate) can be used to obtain thin film data without uncertainties arising from a surface oxide layer of unknown composition and temperature dependence.In this study, we obtain the pseudodielectric functions of MBE-grown AlAs from growth temperature (650°C) to room temperature (30°C). The profile of the wavelength-dependent function from the ellipsometry data indicated a rough surface after growth of 0.5 μm of AlAs at a substrate temperature of 600°C, which is typical for MBE-growth of GaAs.


Sign in / Sign up

Export Citation Format

Share Document