Real Time Dynamics and Control of a Digital Human Arm for Reaching Motion Simulation

Author(s):  
Huijie Yu ◽  
Ray P. S. Han
2012 ◽  
Vol 182-183 ◽  
pp. 1673-1680
Author(s):  
Yu Wang ◽  
Ri Na Su

A kind of 3-RPS and 3-DOF parallel robotic mechanisms is used as motion-sensible-platform of gun training simulator to implement the motion simulation. Its dynamics is analyzed and driving force of joint is gained. This paper introduces the study on motion generation of gun training simulator. The moving model of gun is established on the basis of the model of vehicle. We solve the pose of gun by applying the theory of homogeneous matrix. In order to ensure actuators moving at a preset speed and enable the motion-sensible-platform to perform a real-time moving posture simulation of a wheeled gun vehicle in running, the speed equation of actuator is given. The feasibility of models was tested through the simulation experiments. All of these works are beneficial to optimize design and control realization of motion platform structure.


1999 ◽  
Author(s):  
Kenneth Wong ◽  
Vinod J. Modi ◽  
Clarence W. de Silva ◽  
Arun K. Misra

Abstract This paper presents the design and development of a Multi-module Deployable Manipulator System (MDMS) as well as a dynamical formulation for it. The system is designed for experimental investigations aimed at dynamics and control of this variable geometry manipulator by implementing different control algorithms to regulate its performance. The manipulator operates in a horizontal plane and is unique in that it comprises of four modules, each of which has one revolute joint and one prismatic joint, connected in a chain topology. Each module has a slewing link of approximately 20cm length and is capable of extending by 15cm. The manipulator design involves the selection and sizing of actuators, the design of mounting and connecting components, and the selection of hardware as well as software for real-time control. The dynamical model is formulated using an O(N) algorithm, based on the Lagrangian approach and velocity transformations. The O(N) character is computationally efficient permitting real-time control of the system.


1991 ◽  
Vol 113 (3) ◽  
pp. 379-387 ◽  
Author(s):  
H. Kazerooni ◽  
S. L. Mahoney

This article describes the dynamics, control, and stability of extenders, robotic systems worn by humans for material handling tasks. Extenders are defined as robot manipulators which extend (i.e., increase) the strength of the human arm in load maneuvering tasks, while the human maintains control of the task. Part of the extender motion is caused by physical power from the human; the rest of the extender motion results from force signals measured at the physical interfaces between the human and the extender, and the load and the extender. Therefore, the human wearing the extender exchanges both power and information signals with the extender. The control technique described here lets the designer define an arbitrary relationship between the human force and the load force. A set of experiments on a two-dimensional non-direct-drive extender were done to verify the control theory.


Author(s):  
Ming-Shyan Wang ◽  
Jing Lee ◽  
Jian-Hao Chen

The paper introduces a motion simulation, monitoring, and controlling system based on a three-degree-of-freedom (3DOF) motion platform, stereographic display, and network communication. Proportional-integral-derivative (PID) and fuzzy logic (FL) controllers are applied to control the motion platform and to compare their control qualities with each other. Two applications of the present system are demonstrated. One is a car simulator, in which the motion platform simulates the behaviour of a car running on the road. The other one is an animated virtual reality (VR) remote control system. By cooperating with real-time virtual scene reconstruction, users can remotely monitor and control the motion platform in real-time.


Sign in / Sign up

Export Citation Format

Share Document