Based on Energy Loss Analysis Theory to Analysis Operation Parameter and Coal Consumption of 300MW Power Plant

2012 ◽  
Vol 190-191 ◽  
pp. 37-42
Author(s):  
Kai Rui Liu ◽  
Jun Bao Yang

Introduced the theory of the Energy loss analysis and lots of Energy loss analysis methods and utilized the basic formula method to analysis the influence of some operation parameters of a foreign designed 300MW coal-fired power plant to coal consumption in the variety loads. Applied matlab to make a figure, which contained the influence of some operation parameters of a foreign designed 300MW coal-fired power plant to coal consumption in the variety loads. Compared analysis the results, and gained the energy saving direction, so it conducted the operation of these units and optimized it.

2011 ◽  
Vol 383-390 ◽  
pp. 4130-4133
Author(s):  
Song Feng Tian ◽  
Wei Wang ◽  
Yun Feng Tian ◽  
Shuang Bai Liu

There are many kinds of energy loss indicators in power plant, and there are some relevance among the various indicators. So extraction of the key indicators plays an important role between in energy loss analysis of power plants and optimal management of thermal power plants. Based on the characteristics of these indicators, the idea of rough sets was applied to the energy loss analysis of thermal power plants, then we proposed a new algorithm -- use fuzzy C means algorithm (FCM) to discrete cluster the energy loss indicators of thermal power plant, and then analysis simplified the results with algorithm Johnson. Real experiments (Chaozhou 1,2 and Ningde 3,4 assembling units which of the same type in the SIS system under the THA working condition)’ results had proved high accuracy and valuable of the algorithm.


2011 ◽  
Vol 347-353 ◽  
pp. 631-634
Author(s):  
Qin Liang Tan ◽  
Cai Juan Zhang ◽  
Xiao Ying Hu ◽  
Li Gang Wang ◽  
Qiang Lu ◽  
...  

Biomass direct combustion power generation is the most simple but effective way in dealing with environmental issues and energy crisis. A comprehensive diagnosis with accurate evaluation of energy saving potential of a given biomass power plant is of great importance in lowing the cost of generating electricity, reducing the consumption of energy and pollutant emissions [1]. This paper throws light upon an innovative energy consumption diagnosis method-the specific consumption analysis theory, which is based on the First and Second law of thermodynamics [2,3]. Taking a given biomass power plant of National Energy Group as an example, mathematical models are made based on all the components and processes. The specific consumption analysis theory is employed to calculate the specific consumption within the biomass power plant using design parameters under design operating conditions, thus demonstrating the specific consumption distribution in the power plant, which provides theoretical basis for energy-saving and optimization in biomass power plant.


2011 ◽  
Vol 71-78 ◽  
pp. 2039-2043 ◽  
Author(s):  
Zhi Ping Yang ◽  
Wei Min Kan ◽  
Jing Hui Song ◽  
Jing Bian ◽  
Zhong Guang Fu

The paper researches with a 1000MW thermal power generating unit. The impact of steam cylinder efficiency's changes on steam turbine’s heat consumption rate and units’ coal consumption rate has been evaluated. It provides the basis for the units loss analysis and guidance for the 1000MW units’ energy saving.


Author(s):  
Denisa Olekšáková ◽  
Peter Kollár ◽  
Miloš Jakubčin ◽  
Ján Füzer ◽  
Martin Tkáč ◽  
...  

AbstractThis submitted paper presents the detailed description of the energy loss separation for dc and ac low-frequency magnetic fields of NiFeMo (supermalloy) compacted powder prepared by innovative method of smoothing the surfaces of individual particles. The positive impact of mechanical treatment method on domain wall displacement is explained on the basis of Landgraf approach for dc loss analysis, and the effective dimension for eddy current in ac magnetic field is explained according to Bertotti approach for core loss analysis.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2950
Author(s):  
Vinod Kumar ◽  
Liqiang Duan

Coal consumption and CO2 emissions are the major concerns of the 21st century. Solar aided (coal-fired) power generation (SAPG) is paid more and more attention globally, due to the lesser coal rate and initial cost than the original coal-fired power plant and CSP technology respectively. In this paper, the off-design dynamic performance simulation model of a solar aided coal-fired power plant is established. A 330 MW subcritical coal-fired power plant is taken as a case study. On a typical day, three various collector area solar fields are integrated into the coal-fired power plant. By introducing the solar heat, the variations of system performances are analyzed at design load, 75% load, and 50% load. Analyzed parameters with the change of DNI include the thermal oil mass flow rate, the mass flow rate of feed water heated by the solar energy, steam extraction mass flow rate, coal consumption, and the plant thermal efficiency. The research results show that, as DNI increases over a day, the coal saving rate will also increase, the maximum coal saving rate reaches up to 5%, and plant thermal efficiency reaches 40%. It is analyzed that the SAPG system gives the best performance at a lower load and a large aperture area.


Sign in / Sign up

Export Citation Format

Share Document