Humus Activated Sludge Process Applied in Japan and Korea

2012 ◽  
Vol 209-211 ◽  
pp. 1973-1976
Author(s):  
Ke Zhao ◽  
Gang Zhu

A promising humus activated sludge process with microorganism cultivation reactor filled with humus soil pellets on the basis of traditional activated sludge technology was developed in Japan and used to improve sewage treatment efficiency. Since 1980s, humus activated sludge process was successfully applied in Shimauchi Housing Complex of Matsumoto City, Yamanouchi Sewage Treatment Center and Sewage Treatment Facility at Nagayoshi Agriculture Hamlet and was applied in more than 200 sewage treatment plants in Korea. The operating results showed that the process has the advantage of excellent pollutant removal performance and sludge dewaterability and no odor release.

1994 ◽  
Vol 30 (6) ◽  
pp. 181-184 ◽  
Author(s):  
Bernd Dorias ◽  
Peter Baumann

National and international regulations require a minimum nitrogen removal efficiency of 70% in most public sewage treatment plants. Unlike in activated sludge plants, selective denitrification in trickling filters was not possible until now. Therefore the aim was to employ trickling filter plants for selective denitrification, using innovative technology that involved minimum capital expenditure. For selective denitrification, it is necessary to prevent as much as possible the transfer of oxygen into the trickling filter while feeding the nitrate to be removed, a process similar to upstream denitrification in the activated sludge process. In a test operation conducted in several sewage treatment plants for over a year, the new process with selective denitrification in a covered trickling filter has given successful results. The denitrification efficiency of this system is comparable to that of upstream denitrification in the activated sludge process. Thus, selective denitrification in the trickling filter is a practical alternative to other nitrogen removal processes, while maintaining the established advantages offered by the trickling filter process.


1989 ◽  
Vol 21 (3) ◽  
pp. 119-124 ◽  
Author(s):  
T. Omura ◽  
M. Onuma ◽  
J. Aizawa ◽  
T. Umita ◽  
T. Yagi

The removal of coliform bacteria, enterococcus bacteria, and coliphages in two sewage treatment plants, one using the activated sludge process and the other using a high-rate trickling filter, was investigated over a period of one year. Coliform and enterococcus bacteria were removed with equal efficiency by the two plants, but coliphages were removed more efficiently by the activated sludge process. Experiments on the mechanism of removal revealed that it was mainly due to adsorption on the activated sludge and on the slime in the trickling filter. Die-off of the micro-organisms seemed to play a minor role in the reduction in counts. The treated sewage was disinfected by chlorination prior to discharge into the receiving water. No coliforms were detected in the chlorinated effluents when they had chlorine residuals in the range of 0 to 1.521 mg/l. However, enterococci were detected when chlorine residuals dropped below 0.598 mg/l. Coliphages proved to be the most resistant organisms and they were generally detected throughout the range of chlorine residuals encountered.


1990 ◽  
Vol 22 (7-8) ◽  
pp. 113-121
Author(s):  
W. Maier

In view of the new effluent standards in West Germany, including nitrification and phosphorus elimination, many of the existing sewage treatment plants will have to be rebuilt or expanded. Another demand which will have to be dealt with in the near future is denitrification. Under consideration of the large BOD5-loads which were taken into account when designing the plants, many of them nitrify during the summer or can be easily converted to operate with nitrification. Principles for planning the upgrading of such plants have been laid down in order to achieve the required effluent concentrations. The application of these principles is demonstrated with examples of upgraded plants.


1994 ◽  
Vol 30 (6) ◽  
pp. 31-40 ◽  
Author(s):  
Hiroyshi Emori ◽  
Hiroki Nakamura ◽  
Tatsuo Sumino ◽  
Tadashi Takeshima ◽  
Katsuzo Motegi ◽  
...  

For the sewage treatment plants near rivers and closed water bodies in urbanized areas in Japan and European countries, there is a growing demand for introduction of advanced treatment processes for nitrogen and phosphorus from the viewpoints of water quality conservation and environmental protection. In order to remove nitrogen by the conventional biological treatment techniques, it is necessary to make a substantial expansion of the facility as compared with the conventional activated sludge process. In such urbanized districts, it is difficult to secure a site and much capital is required to expand the existing treatment plant. To solve these problems, a compact single sludge pre-denitrification process using immobilized nitrifiers was developed. Dosing the pellets, which are suitable for nitrifiers growth and physically durable, into the nitrification tank of single sludge pre-denitrification process made it possible to perform simultaneous removal of BOD and nitrogen in a retention time equal to that in the conventional activated sludge process even at the low water temperature of about 10 °C. The 3,000 m3/d full-scale conventional activated sludge plant was retrofitted and has been successfully operated.


1988 ◽  
Vol 20 (4-5) ◽  
pp. 143-152 ◽  
Author(s):  
M. Tendaj-Xavier ◽  
J. Hultgren

Bromma sewage treatment plant is the second largest plant in Stockholm with a design flow of 160,000 m3/d. The wastewater is treated mechanically, chemically by pre-precipitation with ferrous sulphate, and biologically by the activated sludge process. The requirements for the plant are 8 mg BOD7/l, 0.4 mg P/l and 2 mg NH4+-N/l. The requirement for ammonia refers to the period July-October. In order to meet those rather stringent requirements, the biological step was expanded 3 years ago with 6 new sedimentation tanks. The 6 new tanks have the same area as the 6 old ones but they have only a depth of 3.7 m compared with the depth of the old tanks, 5.7 m. Experience from the first years of operation of the new tanks is that these tanks are more sensitive and less efficient than the older ones. It seems that the effluent suspended solids concentration from the old tanks is less influenced by rapid flow variations than the concentration in the effluent from the new secondary sedimentation tanks. During the nitrification period denitrification takes place to some degree in the secondary sedimentation tanks. This may cause loss of solids and it has been observed that the deeper old tanks usually produce an effluent of better quality and seem to be less influenced by denitrification than the new ones.


2018 ◽  
Vol 251 ◽  
pp. 06005 ◽  
Author(s):  
Nazira Dzhumagulova ◽  
Ilya Svetkov ◽  
Vladimir Smetanin ◽  
Nguyen Dinh Dap

The purpose of the present research was to enhance the efficiency of biological wastewater treatment through the direct impact on the metabolism of activated sludge. In the course of research, species and quantitative composition of biological community of activated sludge in aeration tanks during wastewater purification process was studied. Comparative analysis was carried out for linen production wastewater and household sewage. Possible application of biological treatment in linen production was evaluated. Proposals were developed on creation of controllable biological treatment facility. In this paper, biological methods are shown to be efficient for household sewage treatment. Comparative analysis was carried out for linen production wastewater and household sewage. Possible application of biological treatment in linen production was evaluated. Proposals were developed on creation of controllable biological treatment facility.


1990 ◽  
Vol 22 (7-8) ◽  
pp. 161-170
Author(s):  
I. Sekoulov ◽  
R. Addicks ◽  
J. Oles

Enlargement and/or upgrading of already existing sewage treatment plants will bring problems to design and operation. However, this can be solved even in some complicated configuration of the treatment system, as will be demonstrated. Having an activated sludge system for BOD removal (first stage) followed by a trickling filter for nitrification (second stage), denitrification of the effluent without an external H donator is hard to achieve. In domestic sewage treatment, denitrification is usually carried out with BOD as carbon source. Additionally to the principal question of pre- or post denitrification and the related effects on the effluent quality (BOD, COD, NH4) pre-denitrification in the given case would be highly ineffective and uneconomical (large hydraulic loads). The paper presents a system using thickened sludge from the activated sludge sedimentation as H donator. The sludge has been successfully used to denitrify the trickling filter effluent. For the design of the post-denitrification stage, the necessary volume of sludge could be determined together with the volume of the denitrification reactor. Results of the pilot-plant studies are presented.


Sign in / Sign up

Export Citation Format

Share Document