A New Continuous Flow Intersection for Urban Road: Architecture, Design, and Simulation

2012 ◽  
Vol 209-211 ◽  
pp. 677-682 ◽  
Author(s):  
Qiu Chen Liu ◽  
Lun Zhang ◽  
Wen Chen Yang

In the light that heavy left-turn vehicles and oncoming vehicles conflict at conventional intersection(CI), leading to discontinuity and low efficiency of traffic flow, this paper presents a new continuous flow intersection(CFI) for urban roads. The geometry physical model and design principles of the CFI are illustrated and the CFI is designed from following three aspects: traffic space, traffic organization and traffic control. Experiments taking the CI and corresponding the CFI as the reseach objects are carried on, and performance of the proposed the CFI is validated via VISSIM. Extensive simulation results under five traffic conditions have demonstrated the potential of the proposed the CFI for improvement of traffic efficiency, and the applicability of the CFI in China is discussed considering the characteristics of domestic urban intersections and it indicates that the CFI could be applied to domestic suburb roads.

2011 ◽  
Vol 58-60 ◽  
pp. 2477-2482 ◽  
Author(s):  
Nai Jun Xie ◽  
Qi Hua Cheng

Intelligent traffic light control system based on fuzzy control was designed and the implementation of it was also discussed. The system can alter the signal light time according to the number of automobile waiting for passage. The simulation based on Mathematica software show that this method has better effect than traditional way in increase the automobile traffic efficiency and energy saving, what’s more it can adapt to complex traffic conditions.


Author(s):  
Allan M. de Souza ◽  
Torsten Braun ◽  
Leonardo C. Botega ◽  
Raquel Cabral ◽  
Islene C. Garcia ◽  
...  

Abstract Vehicular traffic re-routing is the key to provide better traffic mobility. However, taking into account just traffic-related information to recommend better routes for each vehicle is far from achieving the desired requirements of proper transportation management. In this way, context-aware and multi-objective re-routing approaches will play an important role in traffic management. Yet, most procedures are deterministic and cannot support the strict requirements of traffic management applications, since many vehicles potentially will take the same route, consequently degrading overall traffic efficiency. So, we propose an efficient algorithm named as Better Safe Than Sorry (BSTS), based on Pareto-efficiency. Simulation results have shown that our proposal provides a better trade-off between mobility and safety than state-of-the-art approaches and also avoids the problem of potentially creating different congestion spots.


2021 ◽  
Vol 15 (1) ◽  
pp. 1-10
Author(s):  
Ibrahim Khliefat ◽  
Ahmad Deeb ◽  
Mohammad Mubarak ◽  
Mohammad Naser

Introduction: Continuous flow interventions were first introduced as an alternative to improve traffic operations in the intersections with severe congestion caused by heavy left-turn movements. Objective: This study quantified the effect of modifying the intersection angles of Double Continuous Flow Intersections (DCFI) on their operational characteristics. Mainly, the effects of changing the intersection angle between the different approaches of the main intersection and the angle of the minor cross-over intersections were investigated. Methods: VISSIM software simulation models were used for modifying several design features related to the DCFI and the operational performance was compared between the different simulation scenarios. Results and Discussion: Changes to the cross-over intersection angle increase the safety levels by providing better channelization of traffic movements on the minor intersections of the DCFI and reduce the intersection footprint to be used at high-density urban locations. Increasing the cross-over intersection angle and changing the layout geometry have adverse effects on the capacity of the conventional DCFI. This is mainly because of the added curvature in the intersection approaches which reduces the vehicle speeds, therefore reducing the overall capacity of the modified intersection when compared to the conventional DCFI. However, the total footprint for the intersection is reduced for the modified layout geometry, which improves the capacity of the DCFI. Conclusion: The study has explored the effects of modifying the DCFI intersection angles to fit the limited space in major urban areas on the capacity and performance of the intersection. It showed that DCFI designs could be applied in areas with limited space availability and skewed intersection angles.


2012 ◽  
Vol 2012 ◽  
pp. 1-13
Author(s):  
Ciprian Dobre

Highways tend to get congested because of the increase in the number of cars travelling on them. There are two solutions to this. The first one, which is also expensive, consists in building new highways to support the traffic. A much cheaper alternative consists in the introduction of advanced intelligent traffic control systems to manage traffic and increase the efficiency of the already existing highways. Intelligent lane reservation system for highways (ILRSH) is such a software control system. It is designed to assist and automate the use of a highway lane as a reserved lane. The idea is to allow and support drivers to travel at a speed higher, if in return they are willing to pay a small fee to reserve an empty virtual slot on the reserved lane. This slot is valid for a portion and of the highway and a time window, so each driver pays the fee depending thier its travelling needs. In return, drivers are guaranteed a congestion-free travel on that portion. In this paper, we present the proposed architecture of the ILRSH and its subsystems. The system is based on several proposed algorithms designed to assist the drivers, enter or exit the reserved lane, based on real-world driving observations. We present extensive simulation results showing the feasibility of the proposed approach, that can easily be implemented with little costs on already-existing highways, and the increase in traffic efficiency.


2017 ◽  
Vol 44 (6) ◽  
pp. 462-471 ◽  
Author(s):  
Mahmoud Taha ◽  
Akmal Abdelfatah

The majority of traffic delays in urban areas occur at signalized intersections. Due to the limited availability of space and right-of-way, many transportation agencies are considering unconventional traffic control systems for intersections to improve signal efficiency and reduce overall delays. Common unconventional left-turn treatments include the right-turn followed by a U-turn (RTUT) and a U-turn followed by a right-turn (UTRT). The main goal of this study is to determine the traffic operational performance of the three left-turn treatments under different traffic conditions. The results showed that unconventional left-turn control types have less delay and travel time compared to the direct left-turn (DLT), when the U-turn locations are 200 m away from the main intersection. Also, RTUT showed superior performance over the other left-turn control types, when the U-turn locations are 100 m away from the main intersection.


2021 ◽  
Vol 13 (12) ◽  
pp. 6917
Author(s):  
Binghong Pan ◽  
Shasha Luo ◽  
Jinfeng Ying ◽  
Yang Shao ◽  
Shangru Liu ◽  
...  

As an unconventional design to alleviate the conflict between left-turn and through vehicles, Continuous Flow Intersection (CFI) has obvious advantages in improving the sustainability of roadway. So far, the design manuals and guidelines for CFI are not enough sufficient, especially for the displaced left-turn lane length of CFI. And the results of existing research studies are not operational, making it difficult to put CFI into application. To address this issue, this paper presents a methodological procedure for determination and evaluation of displaced left-turn lane length based on the entropy method considering multiple performance measures for sustainable transportation, including traffic efficiency index, environment effect index and fuel consumption. VISSIM and the surrogate safety assessment model (SSAM) were used to simulate the operational and safety performance of CFI. The multi-attribute decision-making method (MADM) based on an entropy method was adopted to determine the suitability of the CFI schemes under different traffic demand patterns. Finally, the procedure was applied to a typical congested intersection of the arterial road with heavy traffic volume and high left-turn ratio in Xi’an, China, the results showed the methodological procedure is reasonable and practical. According to the results, for the studied intersection, when the Volume-to-Capacity ratio (V/C) in the westbound and eastbound lanes is less than 0.5, the length of the displaced left-turn lanes can be selected in the range of 80 to 170 m. Otherwise, other solutions should be considered to improve the traffic efficiency. The simulation results of the case showed CFI can significantly improve the traffic efficiency. In the best case, compared with the conventional intersection, the number of vehicles increases by 13%, delay, travel time, number of stops, CO emission, and fuel consumption decrease by 41%, 29%, 25%, 17%, and 17%, respectively.


Sign in / Sign up

Export Citation Format

Share Document