Research on Turbulent Boundary Layer Development of Hydraulic Jump Region with the Theory of Plane Adhesive Wall Jet Flow

2012 ◽  
Vol 212-213 ◽  
pp. 1141-1146
Author(s):  
Zhi Chang Zhang ◽  
Ruo Bing Li ◽  
Ying Zhao ◽  
Ming Huan Fu

【Objective】The calculation of turbulent boundary layer development in hydraulic jump region is put forwarded.【Method】According to the analysis of predecessors’ researches about plane adhesive wall jet flow of rectangular channel, Based on the momentum integral equation of turbulent boundary layer and the velocity distribution formula of adhesive wall jet flow, turbulent boundary layer development of hydraulic jump region in rectangular channel is researched.【Result】Formulas of the development of boundary layer in hydraulic jump region and drag coefficient are obtained, the accuracy of equations are verified by the example. 【Conclusion】The calculation has enlightened effect on the hydraulic characteristics of hydraulic jump.

1966 ◽  
Vol 8 (4) ◽  
pp. 426-436 ◽  
Author(s):  
A. D. Carmichael ◽  
G. N. Pustintsev

Methods of predicting the growth of turbulent boundary layers in conical diffusers using the kinetic-energy deficit equation were developed. Three different forms of auxiliary equations were used. Comparison between the measured and predicted results showed that there was fair agreement although there was a tendency to underestimate the predicted momentum thickness and over-estimate the predicted shape factor.


2016 ◽  
Vol 804 ◽  
pp. 513-530 ◽  
Author(s):  
R. Jason Hearst ◽  
Guillaume Gomit ◽  
Bharathram Ganapathisubramani

The influence of turbulence on the flow around a wall-mounted cube immersed in a turbulent boundary layer is investigated experimentally with particle image velocimetry and hot-wire anemometry. Free-stream turbulence is used to generate turbulent boundary layer profiles where the normalised shear at the cube height is fixed, but the turbulence intensity at the cube height is adjustable. The free-stream turbulence is generated with an active grid and the turbulent boundary layer is formed on an artificial floor in a wind tunnel. The boundary layer development Reynolds number ($Re_{x}$) and the ratio of the cube height ($h$) to the boundary layer thickness ($\unicode[STIX]{x1D6FF}$) are held constant at $Re_{x}=1.8\times 10^{6}$ and $h/\unicode[STIX]{x1D6FF}=0.47$. It is demonstrated that the stagnation point on the upstream side of the cube and the reattachment length in the wake of the cube are independent of the incoming profile for the conditions investigated here. In contrast, the wake length monotonically decreases for increasing turbulence intensity but fixed normalised shear – both quantities measured at the cube height. The wake shortening is a result of heightened turbulence levels promoting wake recovery from high local velocities and the reduction in strength of a dominant shedding frequency.


1972 ◽  
Vol 55 (4) ◽  
pp. 719-735 ◽  
Author(s):  
A. A. Townsend

Linearized equations for the mean flow and for the turbulent stresses over sinusoidal, travelling surface waves are derived using assumptions similar to those used by Bradshaw, Ferriss & Atwell (1967) to compute boundary-layer development. With the assumptions, the effects on the local turbulent stresses of advectal, vertical transport, generation and dissipation of turbulent energy can be assessed, and solutions of the equations are expected to resemble closely real flows with the same conditions. The calculated distributions of surface pressure indicate rates of wave growth (expressed as fractional energy gain during a radian advance of phase) of about 15(ρa/ρw) (τo/c2), where τo is the surface stress, co the phase velocity and ρa and ρw the densities of air and water, unless the wind velocity at height λ/2π is less than the phase velocity. The rates are considerably less than those measured by Snyder & Cox (1966), by Barnett & Wilkerson (1967) and by Dobson (1971), and arguments are presented to show that the linear approximation fails for wave slopes of order 0.1.


1972 ◽  
Vol 9 (2) ◽  
pp. 97-98 ◽  
Author(s):  
SHOICHI FUJII ◽  
THEODORE H. OKIISHI

1968 ◽  
Vol 90 (4) ◽  
pp. 452-456 ◽  
Author(s):  
J. A. Schetz ◽  
Sin K. Oh

Transient development of the boundary layer on a flat plate following the impulsive start of motion of the surrounding fluid is analyzed approximately. The Howarth-Dorodnitzin transformation and a Crocco Integral are used to relate the temperature field to the approximate velocity field which is obtained in a “constant density” plane. The solution for the velocity field is determined using the unsteady Momentum Integral equation with a new type of profile. Expressions for the boundary-layer development time and model surface temperature at the end of the development time are presented. Good agreement with a roughly determined experimental flow development time is achieved.


Sign in / Sign up

Export Citation Format

Share Document