The Influence of Longitudinal Magnetic Field on DCEN MAG Welding

2012 ◽  
Vol 217-219 ◽  
pp. 1843-1846 ◽  
Author(s):  
Xu Ming Wang ◽  
Wen Zhang ◽  
Ying Wang

This paper introduces the dynamic process of droplet transfer of DCEN MAG welding applied outside longitudinal magnetic field, and analyses the influence law of magnetic parameters on welding arc, droplet transfer behaviour, wire melting coefficient and weld formation. The feasibility of application of longitudinal magnetic field to DCEN MAG welding is established. We compared DCEN MAG welding with DCEP in order to further perfect rotating MAG welding.

2010 ◽  
Vol 102-104 ◽  
pp. 407-411 ◽  
Author(s):  
Guo Ji Zhao ◽  
Qian Luo ◽  
Xiang Jie Wang ◽  
Jian Luo

Numerical simulation and deposited experiment of MAG welding are carried out on the conditions of Electro-Magnetic Stirring (EMS) in this paper. Based on the research of EMS welding arc action, a simple EMS-MAG welding Gaussian distribution model using whole heat flux density is established, which MAG welding arc and droplet transfer are regarded as one integrated system. The important additional magnetic field parameter in EMS-MAG surfacing deposited welding is considered in this model. The computer-aided arc measurement system is used to analyze the effects of additional magnetic field in MAG welding. Effects of excitation current on welding penetration and width are analyzed by deposited experiments. Many deposited experiments are used to adjust model parameters and verify the simulation results. By defining key parameter and optimizing the model on the basis of experimental data, it can improve the simulation accuracy effectively. The results show that the established Gaussian distribution model can be used to simulate EMS-MAG welding process.


2010 ◽  
Vol 102-104 ◽  
pp. 451-454
Author(s):  
Qian Luo ◽  
Duan Min Lu ◽  
Jian Luo

In this paper, a new welding experiment is studied by applying an additional longitudinal electromagnetic field to CO2 welding process (abbr. LEM-CO2 welding).The characteristics of droplet transfer, macrostructure and microstructure are compared between LEM- CO2 welding and general CO2 welding on Q235 low carbon steel thick plate joint. The research results shows that, an additional longitudinal magnetic field can have a significant effect on properties of the droplet transfer in CO2 welding, the frequency and stability of the droplet transfer in LEM-CO2 welding are improved. The grains of welding seam are refined and welding joints has a higher quality. So the additional longitudinal magnetic field is a very simple and effective method to improve the properties of CO2 welding thick plate joint.


2011 ◽  
Vol 704-705 ◽  
pp. 668-673 ◽  
Author(s):  
Qi Wei Wang ◽  
Sheng Zhu ◽  
Feng Liang Yin ◽  
Yuan Yuan Liang ◽  
Xiao Ming Wang

In the study three dimensions finite element mathematical model of MIG welding with longitudinal magnetic field was established. By ANSYS FEA software the temperature and other physical characteristics of the arc were obtained including the distributions of current density and arc pressure on the anode surface. The simulated results show that when the additional longitudinal magnetic field was introduced into welding process, the temperature of arc decreased remarkably and peak value of temperature changed from 16 950K to 13 700K at a welding current of 120A. Under the action of longitudinal magnetic field, on the one hand, heat flux density and current density at the anode surface decrease in the arc core and rise at the edge of arc, on the other hand, arc pressure decrease and arc potential increase. Keywords: Numerical simulation; MIG welding arc; magnetic field


Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1351 ◽  
Author(s):  
Xiaoxia Jian ◽  
Hebao Wu

The oscillation arc assisted by an extra alternating longitudinal magnetic field (LMF) in narrow gap tungsten arc welding is proved to be effective in avoiding welding defects due to insufficient fusion at the side walls in joining thick wall plates. The behavior of the welding arc and molten pool under the LMF is simulated to reveal the influence of the LMF on the formation of a uniform penetration weld bead. A unified mathematical model was developed for the narrow gap tungsten arc welding including the plasma arc, molten pool, electrode, and their interactions. Under the LMF, the whole welding arc is deflected and oscillates between the two side walls. When the magnetic-field strength is larger than 6 mT, the axis of the arc deflects to the side wall; the maximum value of heat flux at the bottom decreases by one-half, and the maximum value at the side wall is increased by a factor of ten. On the other hand, under the LMF, the forces acting on the molten pool are changed; the fluid flow pattern is helpful to increase the heat transferred to the side walls. The model is validated by experimental results. Both the percentage deviations of the simulation weld penetration at the side wall and at the bottom from the experimental results are lower than 10%.


2011 ◽  
Vol 189-193 ◽  
pp. 993-996 ◽  
Author(s):  
Sheng Zhu ◽  
Qi Wei Wang ◽  
Feng Liang Yin ◽  
Yuan Yuan Liang ◽  
Xiao Ming Wang

The stress and motion state of droplet in MIG welding with alternating longitudinal magnetic field were analyzed, and the impact of alternating longitudinal magnetic field on the droplet transfer were studied by high-speed video camera. The results show that the droplet is spherical approximately and transfer to molten pool along the welding wire axis without external longitudinal magnetic field. When alternating longitudinal magnetic field was introduced into welding process, the droplet rotate around the welding wire clockwise and counter-clockwise alternately. Shape of droplet became flat and direction of transfer deviated from the welding wire axis under the action of magnetic field. As the exciting current increased, extent of deviation from the wire axis increases. When the exciting current is too large (I >20A), extent of deviation is too large and droplet are disintegrated into several small droplet during the transition. So droplet can not transfer into molten pool successfully and the bead can’t be formed.


2019 ◽  
Vol 2019 (2) ◽  
pp. 19-21
Author(s):  
A.D. Razmyshlyaev ◽  
◽  
M.V. Ageeva ◽  
E.V. Lavrova ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document