Numerical Computation of Temperature in APU Compartment of Passenger Plane

2012 ◽  
Vol 220-223 ◽  
pp. 855-858
Author(s):  
Rang Shu Xu ◽  
Nana Zhang ◽  
Ling Niu ◽  
Meng Yang

In order to study heat transfer process in APU compartment of passenger plane and to perform structure thermal analysis, temperature field of APU compartment has been calculated by numerical computation. The computation model of flow and heat transfer process in APU compartment are setup by commercial CFD software Fluent, Realizable k-ε turbulent model and S2S thermal radiation model are used, and the flow field, temperature and heat flow information are acquired. Radiation heat transfer is the major heat transfer process in APU compartment; APU fireproofing cover and heat insulation hood of exhaust pipe function work as radiation heat shielding screens; and cooling air in the APU fireproofing cover plays an important part in decreasing the temperature of the fireproofing cover; the injection cooling air in the exhaust pipe reduced the wall temperature effectively. The results provide reference to optimization design.

2012 ◽  
Vol 588-589 ◽  
pp. 1854-1857
Author(s):  
Shuang Chen ◽  
Bing Yan Zhang ◽  
Jian Hua Zhong

Finned tube heat transfer process was analyzed in this thesis, the optimal mathematical model of the fin efficiency and fin volume which was acted as the objective function is established based on the model of heat transfer theory. The heat exchanger numerical simulation of finned tube is taken by the ANSYS finite element program in heat transfer process, and the finned tube structure parameters ( fin spacing , fin thickness , fin height) were analyzed , the optimum structure parameters of a set of finned tube were obtained at the same time. These studies will have some guidance on the application of finned tubes.


2018 ◽  
Vol 17 (1) ◽  
pp. 80
Author(s):  
R. L. Sobral ◽  
J. M. Quirino ◽  
E. D. Correa ◽  
R. M. S. Gama

The present work shows the influence of the mutual heat transfer on the effectiveness of finned surfaces. Numerical simulations are carried out through a sequence of linear problems, possessing an equivalent minimum principle, that has as its limit the solution of the original problem. The original nonlinear problem is regarded as the limit (which always exists) of a sequence of linear problems like the classical conduction-convection ones. In this work the nonlinear conduction-radiation heat transfer process is considered and simulated by means of a finite difference linear scheme. Such a limit is reached in an easy way by means of standard procedures, allowing the employment of more realistic hypotheses, like some nonlinear boundary conditions, since the mathematical complexities are not a constraint for simulating the elliptic partial differential equation. This work accounts for the the steady state heat transfer process in rigid fins which experiences convective and radiative heat exchange. Some typical results are shown in order to illustrate the methodology. Results have shown both the relevance of the radiation and the importance of the thermal interaction between the fins, so that there is an effective and realistic thermal mapping. Neglecting the thermal interaction can lead to errors of up to 20 percent.


Sign in / Sign up

Export Citation Format

Share Document