Three-Dimensional Scanning System with Double Structured-Light Sensors

2012 ◽  
Vol 226-228 ◽  
pp. 1938-1941
Author(s):  
Bin Peng ◽  
Hai Shu Tan ◽  
Fu Qiang Zhou

Three-dimensional (3D) vision scanning measurement is widely used in industry for its ability to obtain the 3D surface data of the object. Aiming at overcoming the shortcomings of 3D scanning measurement system with single structured-light sensor, such as limited measurement range and blind measurement area, a scanning system based on double structured-light sensors (DSS) is established. The object is scanned from two different directions, and the 3D surface coordinates are unified to the measurement coordinate system to obtain the 3D surface of the measured object. In this paper, the mathematical model of the DSS scanning system is established. Meanwhile, an on-site calibration approach based on planar target is proposed to complete the system calibration task. Finally, experimental results of practical data are given to show the feasibility and validity of the proposed system.

2014 ◽  
Vol 6 ◽  
pp. 758679 ◽  
Author(s):  
He Gao ◽  
Fuqiang Zhou ◽  
Bin Peng ◽  
Yexin Wang ◽  
Haishu Tan

Structured-light three-dimensional (3D) vision measurement is currently one of the most common approaches to obtain 3D surface data. However, the existing structured-light scanning measurement systems are primarily constructed on the basis of single sensor, which inevitably generates three obvious problems: limited measurement range, blind measurement area, and low scanning efficiency. To solve these problems, we developed a novel 3D wide FOV scanning measurement system which adopted two multiline structured-light sensors. Each sensor is composed of a digital CCD camera and three line-structured-light projectors. During the measurement process, the measured object is scanned by the two sensors from two different angles at a certain speed. Consequently, the measurement range is expanded and the blind measurement area is reduced. More importantly, since six light stripes are simultaneously projected on the object surface, the scanning efficiency is greatly improved. The Multiline Structured-light Sensors Scanning Measurement System (MSSS) is calibrated on site by a 2D pattern. The experimental results show that the RMS errors of the system for calibration and measurement are less than 0.092 mm and 0.168 mm, respectively, which proves that the MSSS is applicable for obtaining 3D object surface with high efficiency and accuracy.


Author(s):  
Yang Qi ◽  
◽  
Yuan Li

Efficient and precise three-dimensional (3D) measurement is an important issue in the field of machine vision. In this paper, a measurement method for indoor key points is proposed with structured lights and omnidirectional vision system and the system can achieve the wide field of view and accurate results. In this paper, the process of obtaining indoor key points is as follows: Firstly, through the analysis of the system imaging model, an omnidirectional vision system based on structured light is constructed. Secondly, the full convolution neural network is used to estimate the scene for the dataset. Then, according to the geometric relationship between the scenery point and its reference point in structured light, for obtaining the 3D coordinates of the unstructured light point is presented. Finally, combining the full convolution network model and the structured light 3D vision model, the 3D mathematical representation of the key points of the indoor scene frame is completed. The experimental results proved that the proposed method can accurately reconstruct indoor scenes, and the measurement error is about 2%.


2021 ◽  
pp. 1-19
Author(s):  
Zeng Wang ◽  
Weidong Liu ◽  
Minglang Yang

As the main part of design display and evaluation, product three-dimensional (3D) form is the core object in affective product design. However, previous research has not yet addressed the development of technical models and method involving complete 3D surface data, and thus cannot guarantee the quality of affective product design. By using the techniques of triangular mesh model, spherical harmonic and conditional variational auto-encoder, this paper proposes a data-driven affective product design method composed of several technical models using complete 3D surface data. These models include: mathematical model for quantifying 3D form, recognition model for recognizing customer’s affective responses, and generative model for generating new 3D forms. For affective product design, the mathematical model achieves the acquisition and processing of complete 3D surface data, the recognition model improves the objectivity and accuracy of recognition by integrating the 3D form data into the calculation process of emotion recognition, and the generative model realizes the automatic generation of new 3D forms in response to emotional data based on the recognition results. Each model provides technical support for realizing the acquisition, processing and generation of complete 3D surface data of product form, and ensures the systematic and completeness of the proposed method for the affective product design involving 3D form innovation. The feasibility of the method is verified by an example of car design, and the results show that it is an effective affective product design method involving 3D form innovation.


2018 ◽  
Vol 26 (22) ◽  
pp. 28544 ◽  
Author(s):  
Haosong Yue ◽  
Yue Yu ◽  
Weihai Chen ◽  
Xingming Wu

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Jianying Yuan ◽  
Qiong Wang ◽  
Bailin Li

3D (three-dimensional) structured light scanning system is widely used in the field of reverse engineering, quality inspection, and so forth. Camera calibration is the key for scanning precision. Currently, 2D (two-dimensional) or 3D fine processed calibration reference object is usually applied for high calibration precision, which is difficult to operate and the cost is high. In this paper, a novel calibration method is proposed with a scale bar and some artificial coded targets placed randomly in the measuring volume. The principle of the proposed method is based on hierarchical self-calibration and bundle adjustment. We get initial intrinsic parameters from images. Initial extrinsic parameters in projective space are estimated with the method of factorization and then upgraded to Euclidean space with orthogonality of rotation matrix and rank 3 of the absolute quadric as constraint. Last, all camera parameters are refined through bundle adjustment. Real experiments show that the proposed method is robust, and has the same precision level as the result using delicate artificial reference object, but the hardware cost is very low compared with the current calibration method used in 3D structured light scanning system.


2005 ◽  
Vol 12 (2) ◽  
pp. 170-177 ◽  
Author(s):  
Ezequiel Ponz ◽  
Juan Luis Ladaga ◽  
Rita Dominga Bonetto

Scanning electron microscopy (SEM) is widely used in the science of materials and different parameters were developed to characterize the surface roughness. In a previous work, we studied the surface topography with fractal dimension at low scale and two parameters at high scale by using the variogram, that is, variance vs. step log–log graph, of a SEM image. Those studies were carried out with the FERImage program, previously developed by us. To verify the previously accepted hypothesis by working with only an image, it is indispensable to have reliable three-dimensional (3D) surface data. In this work, a new program (EZEImage) to characterize 3D surface topography in SEM has been developed. It uses fast cross correlation and dynamic programming to obtain reliable dense height maps in a few seconds which can be displayed as an image where each gray level represents a height value. This image can be used for the FERImage program or any other software to obtain surface topography characteristics. EZEImage also generates anaglyph images as well as characterizes 3D surface topography by means of a parameter set to describe amplitude properties and three functional indices for characterizing bearing and fluid properties.


Sign in / Sign up

Export Citation Format

Share Document