The Assessment on the Accuracy of Chart Datum Transfer Algorithm

2012 ◽  
Vol 226-228 ◽  
pp. 656-659
Author(s):  
Xin Xuan Sun ◽  
Fu Min Xiao ◽  
Wei Xia ◽  
Gang Bian ◽  
Shao Hua Jin

Chart datum is a vertical reference of ocean depth, which can give the ocean vertical spatial information for Marine Geodesy. Due to time and resource constraints, it is a practical problem of how to determine the chart datum with high accuracy at the short-term tidal stations. In this paper, based on the least-square fitting model, the transfer algorithm for the chart datum at the short-term tidal stations is further developed. Both the accuracy of chart datum computed by this algorithm and the effect on those are presented. The findings of this paper are summarized as follows: The accuracy computed by the least-square fitting model can achieve the centimeter level. The accuracy values determined by the least-square fitting model can further be improved by using the instantaneous ratio of tidal range and selecting the short-distance permanent tidal station.

2008 ◽  
Vol 385-387 ◽  
pp. 693-696 ◽  
Author(s):  
Woo Gon Kim ◽  
Song Nan Yin ◽  
Ik Hee Jung ◽  
Yong Wan Kim

This study aimed to model the long-term creep curves above 105 hours by implementing a nonlinear least square fitting (NLSF) of the Kachanov-Rabotnov (K-R) model. For this purpose, the short-term creep curves obtained from a series of creep tests at 950oC were used. In the NLSF of their full creep curves, the K-R model represented a poor match to the experimental curves, but the modified K-R one revealed a good agreement to them. The Monkman-Grant (M-G) strain represented the behavior of a stress dependency, but the 􀁏 parameter was constant with a stress independency. The 􀁏 value in the modified K-R model was 2.78. Long-term creep curves above 105 hours from short-term creep data were modeled by the modified K-R model.


2004 ◽  
Vol 14 (04n05) ◽  
pp. 261-276 ◽  
Author(s):  
NILOY J. MITRA ◽  
AN NGUYEN ◽  
LEONIDAS GUIBAS

In this paper we describe and analyze a method based on local least square fitting for estimating the normals at all sample points of a point cloud data (PCD) set, in the presence of noise. We study the effects of neighborhood size, curvature, sampling density, and noise on the normal estimation when the PCD is sampled from a smooth curve in ℝ2or a smooth surface in ℝ3, and noise is added. The analysis allows us to find the optimal neighborhood size using other local information from the PCD. Experimental results are also provided.


2012 ◽  
Vol 232 ◽  
pp. 944-948 ◽  
Author(s):  
Ying Qi Tan ◽  
Xiang Yang Liu ◽  
Bao Qing Den

An applied hardware circuit for detecting the AGC signals isolated with DSP is designed based on a high-linearity analog optocoupler. The problem of narrow measuring scope, low linearity and instability which caused by noisy signals is resolved when collects industrial analog signals into DSP. The practical circuit with proper design of components is designed through repeated experiments. The experiment data are analyzed by the method of least-square. The analyzed results show this circuit has the high accuracy and good linearity.


1981 ◽  
Vol 29 (2) ◽  
pp. 639-641 ◽  
Author(s):  
Donald M. Wilkie ◽  
Marcia L. Spetch ◽  
Lincoln Chew

2015 ◽  
Vol 3 (Suppl 1) ◽  
pp. A319
Author(s):  
S Spadaro ◽  
S Grasso ◽  
V Cricca ◽  
F Dalla Corte ◽  
R Di Mussi ◽  
...  

Author(s):  
Kuo Liu ◽  
Haibo Liu ◽  
Te Li ◽  
Yongqing Wang ◽  
Mingjia Sun ◽  
...  

The conception of the comprehensive thermal error of servo axes is given. Thermal characteristics of a preloaded ball screw on a gantry milling machine is investigated, and the error and temperature data are obtained. The comprehensive thermal error is divided into two parts: thermal expansion error ((TEE) in the stroke range) and thermal drift error ((TDE) of origin). The thermal mechanism and thermal error variation of preloaded ball screw are expounded. Based on the generation, conduction, and convection theory of heat, the thermal field models of screw caused by friction of screw-nut pairs and bearing blocks are derived. The prediction for TEE is presented based on thermal fields of multiheat sources. Besides, the factors influencing TDE are analyzed, and the model of TDE is established based on the least square method. The predicted thermal field of the screw is analyzed. The simulation and experimental results indicate that high accuracy stability can be obtained using the proposed model. Moreover, high accuracy stability can still be achieved even if the moving state of servo axis changes randomly, the screw is preloaded, and the thermal deformation process is complex. Strong robustness of the model is verified.


2017 ◽  
Vol 21 (1) ◽  
pp. 37 ◽  
Author(s):  
Hua Deng ◽  
Yan Li ◽  
Yingchao Zhang ◽  
Hou Zhou ◽  
Peipei Cheng ◽  
...  

The forecast of wind energy is closely linked to the prediction of the variation of winds over very short time intervals. Four wind towers located in the Inner Mongolia were selected to understand wind power resources in the compound plateau region. The mesoscale weather research and forecasting combining Yonsei University scheme and Noah land surface model (WRF/YSU/Noah) with 1-km horizontal resolution and 10-min time resolution were used to be as the wind numerical weather prediction (NWP) model. Three statistical techniques, persistence, back-propagation artificial neural network (BP-ANN), and least square support vector machine (LS-SVM) were used to improve the wind speed forecasts at a typical wind turbine hub height (70 m) along with the WRF/YSU/Noah output. The current physical-statistical forecasting techniques exhibit good skill in three different time scales: (1) short-term (day-ahead); (2) immediate-short-term (6-h ahead); and (3) nowcasting (1-h ahead). The forecast method, which combined WRF/YSU/Noah outputs, persistence, and LS-SVM methods, increases the forecast skill by 26.3-49.4% compared to the direct outputs of numerical WRF/YSU/Noah model. Also, this approach captures well the diurnal cycle and seasonal variability of wind speeds, as well as wind direction. Predicción de vientos en una altiplanicie a la altura del eje con el esquema de la Universidad Yonsei/Modelo Superficie Terrestre Noah y la predicción estadísticaResumenLa estimación de la energía eólica está relacionada con la predicción en la variación de los vientos en pequeños intervalos de tiempo. Se seleccionaron cuatro torres eólicas ubicadas al interior de Mongolia para estudiar los recursos eólicos en la complejidad de un altiplano. Se utilizó la investigación climática a mesoscala y la combinación del esquema de la Universidad Yonsei con el Modelo de Superficie Terrestre Noah (WRF/YSU/Noah), con resolución de 1km horizontal y 10 minutos, como el modelo numérico de predicción meteorológica (NWP, del inglés Numerical Weather Prediction). Se utilizaron tres técnicas estadísticas, persistencia, propagación hacia atrás en redes neuronales artificiales y máquina de vectores de soporte-mínimos cuadrados (LS-SVM, del inglés Least Square Support Vector Machine), para mejorar la predicción de la velocidad del viento en una turbina con la altura del eje a 70 metros y se complementó con los resultados del WRF/YSU/Noah. Las técnicas de predicción físico-estadísticas actuales tienen un buen desempeo en tres escalas de tiempo: (1) corto plazo, un día en adelante; (2) mediano plazo, de seis días en adelante; (3) cercano, una hora en adelante. Este método de predicción, que combina los resultados WRF/YSU/Noah con los métodos de persistencia y LS-SVM incrementa la precisión de predicción entre 26,3 y 49,4 por ciento, comparado con los resultados directos del modelo numérico WRF/YSU/Noah. Además, este método diferencia la variabilidad de las estaciones y el ciclo diurno en la velocidad y la dirección del viento.


Author(s):  
Dali Chen ◽  
Dingyu Xue ◽  
YangQuan Chen

Firstly the one-dimension digital fractional order Savitzky-Golay differentiator (1-D DFOSGD), which generalizes the Savitzky-Golay filter from the integer order to the fractional order, is proposed to estimate the fractional order derivative of the noisy signal. The polynomial least square fitting technology and the Riemann-Liouville fractional order derivative definition are used to ensure robust and accuracy. Experiments demonstrate that 1-D DFOSGD can estimate the fractional order derivatives of both ideal signal and noisy signal accurately. Secondly, the two-dimension DFOSGD is obtained from 1-D DFOSGD by defining a group of direction operators, and a new image enhancing method based on 2-D DFOSGD is presented. Experiments demonstrate that 2-D DFOSGD has very good performance on image enhancement.


1992 ◽  
Vol 83 (3) ◽  
pp. 359-374 ◽  
Author(s):  
Mary M. Smyth ◽  
Pamela L. Pelky

Sign in / Sign up

Export Citation Format

Share Document