The Study of Movement Encoder with Low Cost and High Performance

2012 ◽  
Vol 229-231 ◽  
pp. 845-848
Author(s):  
Xiao Wei Wang

The paper proposes a design scheme of movement encoder with low cost and high performance. The scheme can provide higher precise rotor position signal for motor by a hall-effect latch and a linear hall-effect sensor, and it can also provide rotational speed and direction of motor by a winding with full pole distance, at last we deduce a torque balance equation based on speed and acceleration of motor. The study shows that the scheme with low cost have much higher position precision than traditional rotational transformer and hall-effect position sensor, and it does not exist amplitude error and phase error, function error is small. It is very worthy to the wide application of motor of electric bicycle, wind-driven generator, electric car, and servomotor, etc.

Machines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 101
Author(s):  
Leonardo Acho

The main objective of this paper is to present a position control design to a DC-motor, where the set-point is externally supplied. The controller is conceived by using vibrational control theory and implemented by just processing the time derivative of a Hall-effect sensor signal. Vibrational control is robust against model uncertainties. Hence, for control design, a simple mathematical model of a DC-Motor is invoked. Then, this controller is realized by utilizing analog electronics via operational amplifiers. In the experimental set-up, one extreme of a flexible beam attached to the motor shaft, and with a permanent magnet fixed on the other end, is constructed. Therefore, the control action consists of externally manipulating the flexible beam rotational position by driving a moveable Hall-effect sensor that is located facing the magnet. The experimental platform results in a low-priced device and is useful for teaching control and electronic topics. Experimental results are evidenced to support the main paper contribution.


2012 ◽  
Vol 1427 ◽  
Author(s):  
Hamid Kiumarsi ◽  
Hiroyuki Ito ◽  
Noboru Ishihara ◽  
Kenichi Okada ◽  
Yusuke Uemichi ◽  
...  

ABSTRACTA 60 GHz tandem coupler using offset broadside coupled lines is proposed in a WLP (Wafer Level Packaging) technology. The fabricated coupler has a core chip area of 750 μm × 385 μm (0.288 mm2). The measured results show an insertion loss of 0.44 dB, an amplitude imbalance of 0.03 dB and a phase difference of 87.6° at 60 GHz. Also the measurement shows an insertion loss of less than 0.67 dB, an amplitude imbalance of less than 0.31 dB, a phase error of less than 3.7°, an isolation of more than 29.7 dB and a return loss of more than 27.9 dB at the input ant coupled ports and more than 14.3 dB at the direct and isolated ports over the frequency band of 57-66 GHz, covering 60 GHz band both in Japan and US. To the best of our knowledge the proposed coupler achieves the lowest ever reported insertion loss and amplitude imbalance for a 3-dB coupler on a silicon substrate. With its superior performance and lower cost compared to the CMOS counterparts, the proposed coupler is a suitable candidate for low-cost high-performance millimeter-wave systems.


2018 ◽  
Vol 15 (2) ◽  
pp. 225-232 ◽  
Author(s):  
Ugljesa Jovanovic ◽  
Igor Jovanovic ◽  
Marjan Blagojevic ◽  
Dejan Krstic ◽  
Dragan Mancic

A low-cost teslameter based on a Hall effect sensor MLX90242 is proposed in this paper. The proposed teslameter is built around a PIC18F4550 microcontroller and it can measure magnetic flux density in the range between -55 mT and 55 mT. Temperature stability of measurements originates from the MLX90242 sensor itself. In order for the proposed transducer to be accurate, it has undergone a calibration procedure using a highly accurate teslameter employed as reference instruments and high-quality variable-field electromagnet. The proposed teslameter can store measurements on a PC via built-in USB communication.


2019 ◽  
Vol 8 (4) ◽  
pp. 169 ◽  
Author(s):  
Shady Zahran ◽  
Adel Moussa ◽  
Naser El-Sheimy

The last decade has witnessed a wide spread of small drones in many civil and military applications. With the massive advancement in the manufacture of small and lightweight Inertial Navigation System (INS), navigation in challenging environments became feasible. Navigation of these small drones mainly depends on the integration of Global Navigation Satellite Systems (GNSS) and INS. However, the navigation performance of these small drones deteriorates quickly when the GNSS signals are lost, due to accumulated errors of the low-cost INS that is typically used in these drones. During GNSS signal outages, another aiding sensor is required to bound the drift exhibited by the INS. Before adding any additional sensor on-board the drones, there are some limitations that must be taken into considerations. These limitations include limited availability of power, space, weight, and size. This paper presents a novel unconventional method, to enhance the navigation of autonomous drones in GNSS denied environment, through a new utilization of hall effect sensor to act as flying odometer “Air-Odo” and vehicle dynamic model (VDM) for heading estimation. The proposed approach enhances the navigational solution by estimating the unmanned aerial vehicle (UAV) velocity, and heading and fusing these measurements in the Extended Kalman Filter (EKF) of the integrated system.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6695
Author(s):  
Dirk Johannes De Beer ◽  
Trudi-Heleen Joubert

Impedance spectroscopy is a widely used electrochemical technique with a wide variety of applications. Many of these applications benefit from the additional accessibility provided by low-cost impedance devices. With this in mind, a low-cost impedance device was designed for a high performance-to-cost ratio. The performance of this analyzer was validated against a high-performance DropSens µStat-i 400s potentiostat by performing an application-based experiment. Nitrate detection provides a relevant experiment because of the importance of maintaining precise nitrate concentrations to mitigate the impact of nitrate fluctuations on the environment. Dissolved nitrate samples of different concentrations, in the range 3–1000 mg/L, were confirmed colorimetrically and measured with both instruments. A calibration curve of the real impedance matched a sigmoidal transfer, with a linear region for concentrations below 10 mg/L. The device under investigation exhibited an average magnitude error of 1.28% and an average phase error of 0.96∘ relative to the high-performance standard, which validates the performance of the low-cost device. A cost analysis is presented that highlights some of the complexities of cost comparisons.


2008 ◽  
Vol 128 (2) ◽  
pp. 125-130
Author(s):  
Kan Akatsu ◽  
Nobuhiro Mitomo ◽  
Shinji Wakui

Sign in / Sign up

Export Citation Format

Share Document