Computational Modeling of Interaction of Dental Implant with Mandible

2012 ◽  
Vol 245 ◽  
pp. 57-62 ◽  
Author(s):  
Petr Marcián ◽  
Libor Borák ◽  
Ondřej Konečný ◽  
Petr Navrátil ◽  
Zdeněk Florian

This paper is focused on computational modeling of an interaction of dental implant with mandible bone. It describes creation of computational model including model of geometry, materials, loads and constraints. There is a comparative stress-strain analysis of the levels of cancellous bone model. Computations are performed with the use of finite element method. Results show differences between the model which includes trabecular architecture of cancellous bone tissue and the model with non-trabecular cancellous bone tissue. For better description of the processes in bone tissue and at the interface between bone tissue and implant, it is necessary to create the computational model on the highest possible level, i.e. with the trabecular bone tissue.

Author(s):  
G. Bobik ◽  
J. Żmudzki ◽  
K. Majewska

Purpose: Difference in the mechanical properties of bone and stiffer femoral implant causes bone tissue resorption, which may result in implant loosening and periprosthetic fractures. The introduction of porous material reduces the stiffness of the implant. The aim of the study was to analyse the influence of porous shell of femoral revision implant on bone tissue loading distribution with use the finite element method. Design/methodology/approach: Load transfer in the femur has been investigated using the finite element method (Ansys). Cementless implant models were placed in the anatomical femur model. Femur model included sponge bone and cortical bone. The solid implant was compared with the implant containing porous material in 70% in outer layer with a thickness of 2 mm. Load of 1500 N during gait was simulated. In addition, the forces of the ilio-tibial band and the abductor muscles were implemented, as well as the torque acting on the implant. Findings: Increase of stress for the porous model was found. The underload zones in bone have been reduced. Loading distribution was slightly more favourable, albeit rather in cortical bone. Stress value in cancellous bone around cementless implant margin has increased to a level that is dangerous for bone loss. Stress in the implant was not dangerous for damage. The stress distribution was different in the implant neck zone where the porous shell borne a little less load and high stress was shifted to the stiffer core. Research limitations/implications: Variable conditions for fitting the stem to the bone as well as the friction conditions were not investigated. Practical implications: Stress values in the spongy bone around the insertion edge of the cementless implant are consistent with long-term clinical results of the bone atrophy in 1 and 2 Gruen`s zones around the fully porous implants. Originality/value: The advantage of fully porous coated implant was the decrease of risk of trabecular bone tissue resorption around the implant tip and the increase of risk of trabecular bone tissue resorption around insertion edge of the implant.


2012 ◽  
Vol 472-475 ◽  
pp. 1524-1527 ◽  
Author(s):  
Jiří Valášek ◽  
Kamil Řehák ◽  
David Krpalek ◽  
Veronika Ebringerová ◽  
Zdeněk Florian

The presented work is focused on stress - strain analysis of a reconstruction plate. For this problem the computational modelling was chosen with using finite element method. Mandible was created based on the methods of Reverse Engineering and CT images. Using these methods a STL model of mandible with cortical and cancellous bone tissue was created. A volume model of lower jaw with applied reconstruction plate was created in CAD software. A Symphysis fracture of lower jaw was modeled in calculation program ANSYS. The cancellous bone tissue is modeled with different mechanical properties, which corresponds to the varying quality of this tissue. In this work an influence of varying quality of cancellous bone tissue to von Mises stress is observed.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Vikas Tomar

Trabecular bone fracture is closely related to the trabecular architecture, microdamage accumulation, and bone tissue properties. Micro-finite-element models have been used to investigate the elastic and yield properties of trabecular bone but have only seen limited application in modeling the microstructure dependent fracture of trabecular bone. In this research, dynamic fracture in two-dimensional (2D) micrographs of ovine (sheep) trabecular bone is modeled using the cohesive finite element method. For this purpose, the bone tissue is modeled as an orthotropic material with the cohesive parameters calculated from the experimental fracture properties of the human cortical bone. Crack propagation analyses are carried out in two different 2D orthogonal sections cut from a three-dimensional 8mm diameter cylindrical trabecular bone sample. The two sections differ in microstructural features such as area fraction (ratio of the 2D space occupied by bone tissue to the total 2D space), mean trabecula thickness, and connectivity. Analyses focus on understanding the effect of the rate of loading as well as on how the rate variation interacts with the microstructural features to cause anisotropy in microdamage accumulation and in the fracture resistance. Results are analyzed in terms of the dependence of fracture energy dissipation on the microstructural features as well as in terms of the changes in damage and stresses associated with the bone architecture variation. Besides the obvious dependence of the fracture behavior on the rate of loading, it is found that the microstructure strongly influences the fracture properties. The orthogonal section with lesser area fraction, low connectivity, and higher mean trabecula thickness is more resistant to fracture than the section with high area fraction, high connectivity, and lower mean trabecula thickness. In addition, it is found that the trabecular architecture leads to inhomogeneous distribution of damage, irrespective of the symmetry in the applied loading with the fracture of the entire bone section rapidly progressing to bone fragmentation once the accumulated damage in any trabeculae reaches a critical limit.


Author(s):  
Iskandar Hasanuddin ◽  
Husaini ◽  
M. Syahril Anwar ◽  
B.Z. Sandy Yudha ◽  
Hasan Akhyar

2021 ◽  
pp. 38-40
Author(s):  
O.Yu. Rivis ◽  
V.S. Melnyk ◽  
M.V. Rivis ◽  
K.V. Zombor

The aim of the study. Carry out a comparative analysis of the support ability of human jaw bone tissue in monocortical and bicortical installation of a mini-implant of own design OMG. Research methods. In order to study biomechanical characteristics of developed OMG mini-implant and bone tissue capacity during monocortical and bicortical installation, the finite element method (MSE) was used. The scheme and finite element 2-D model of bicortical installation of OMG mini-implant (length 8 mm, diameter 1.8 mm) provided full penetration through one layer of cortical bone equal to 1 mm, the entire cancellous bone and immersion in the second layer of cortical bone by 0, 5 mm. No implantation was immersed in the second cortical layer of bone during monocortical installation. A single force load of 1 N was applied in the horizontal direction parallel to the cortical plate of the bone. Results of the study. One of the most important factors leading to the success of the use of a mini-implant is its stability in the process of orthodontic treatment. Quite a high level of failure in the monocortical installation of mini-screws has led to the search for better methods to ensure the stability of their use. This was a bicortical method of fixation, based on the placement of the minig screw in the thickness of the two cortical plates of the jaws. Area for such installation of mini-screws can be a site of a palate and alveolar sprouts at installation of miniimplants through all its thickness. As shown by our data on the use of the finite element method under the force load of the biomechanical system "bone - mini-implant", the stress concentration zone is located in the area of the cortical bone of the jaw. The results of the calculation of the maximum stresses (σmax, MPa) and the maximum possible displacements (umax, mm) of the mini-implant in the biomechanical system "bone - mini-implant" in monocortical installation were, respectively, 8.27 MPa and 0.300 * 10-8 mm and in bicortical installation 6.00 MPa and 0.201 * 10-8 mm. The bicortical method of fixing the mini-implant in the jaw bones significantly increases the ability to resist deformation of this type of biomechanical system under force loads of the mini-implant. In the bicortical method of mini-implant placement, the extreme values of equivalent according to Mises stresses in the upper part of the cortical bone of the jaw are reduced by 27%. This can be explained by a significant increase in the area of contact due to the two layers of the cortical bone of the jaw with the surface of the mini-implant. Conclusion. The bicortical method of installing mini-implants is a more effective and reliable way to provide skeletal support during orthodontic treatment.


Sign in / Sign up

Export Citation Format

Share Document