CFD Simulation of Gas-Solid Flow in Dense Phase Bypass Pneumatic Conveying Using the Euler-Euler Model

2010 ◽  
Vol 26-28 ◽  
pp. 1190-1194 ◽  
Author(s):  
Y. Wang ◽  
K.C. Williams ◽  
M.G. Jones ◽  
B. Chen

The pressure drop predictions across a bypass pipeline in dense phase pneumatic conveying were investigated numerically. The simulation was conducted using the commercial Computational Fluid Dynamic (CFD) software Fluent with the Euler- Euler model accounting for four-way coupling. Experiments and calculations were conducted using flyash powder conveyed in a horizontal pipeline. The influence of the pipe length on pressure drop prediction was also investigated. The results indicate that pressure prediction of the CFD simulation model for a bypass pipe is promising. The conclusion is that this investigation can offer improved insight and initial design modelling capability for bypass pneumatic conveying systems.

2007 ◽  
Vol 25 (6) ◽  
pp. 495-506 ◽  
Author(s):  
D. Mcglinchey ◽  
A. Cowell ◽  
E. A. Knight ◽  
J. R. Pugh ◽  
A. Mason ◽  
...  

2021 ◽  
pp. 116992
Author(s):  
O. Orozovic ◽  
H. Rajabnia ◽  
A. Lavrinec ◽  
Y. Alkassar ◽  
M.H. Meylan ◽  
...  

Author(s):  
M.R. Khosravi Nikou ◽  
M.R. Ehsani ◽  
M. Davazdah Emami

This paper describes the results of computational fluid dynamic modeling of hydrodynamics, heat and mass transfer simultaneously in Flexipac 1Y operated under a counter-current gas-liquid flow condition. The simulation was performed for a binary mixture of methanol-isopropanol distillation. The pressure drop, the height of equivalent to theoretical plate (HETP) and temperature distribution across the column were calculated and compared with experimental data. The mean absolute relative error (MARE) between CFD predictions and experimental data for the pressure drop, HETP and temperature profile are 20.7%, 12.9% and 2.8%, respectively.


2017 ◽  
Vol 32 (1) ◽  
pp. 32
Author(s):  
Beatriz Kenickel Nunes ◽  
Silvia Regina Lucas de Souza ◽  
Arilson José de Oliveira Júnior ◽  
Enedy Allan Rodrigues Cordeiro ◽  
Reginaldo Apolinário de Almeida

As observações geradas em estudos sobre instalações de suínos têm demonstrado que o desempenho térmico das instalações comumente utilizadas pelos produtores vem apresentando um quadro de desconforto térmico na fase da maternidade, devido às adaptações construtivas feitas com a finalidade de atender tanto as necessidades da matriz quanto dos leitões. Sendo assim, o objetivo deste trabalho foi utilizar a ferramenta de fluidodinâmica computacional (CFD) para realizar o mapeamento do microambiente de duas instalações de suínos, visando o bem-estar dos animais. As simulações foram obtidas em uma maternidade da Fazenda Experimental Lageado, UNESP, Botucatu/SP e de uma granja comercial localizada em Santa Cruz do Rio Pardo/SP. Para as simulações utilizou-se o software Autodesk® CFD Simulation juntamente com o AutoCAD 3D, para desenho das instalações. As condições de conforto térmico foram analisadas por meio da aplicação do índice de voto médio estimado – PMV. Na instalação comercial simulada observou-se que as aberturas laterais não são suficientes para manter uma condição de conforto térmico, segundo o índice PMV. Com o uso da fluidodinâmica computacional foi possível modificar o ambiente mediante a elevação do seu fluxo de ar, o que demonstrou ser uma solução na diminuição da temperatura do ar e alcance de uma condição de conforto térmico.PALAVRAS-CHAVE: Conforto térmico, bem-estar de suínos, fluidodinâmica computacional, CFD, simuladores. FLUIDODYNAMICS COMPUTATIONAL USED FOR THE MAPPING OF THERMAL CONDITIONS IN INSTALLATION OF SWINE MATERNITIESABSTRACT: Studies have shown that the thermal performance of facilities commonly used by producers has presented an environmental discomfort picture in the maternity phase due to constructive adjustments made in order to meet needs of both piglets and sow. Therefore, this work aimed to use the computational fluid dynamic tool for mapping the microclimate of two facilities, which purpose of improving the animal welfare. The simulations were conducted at experimental farm “Lageado”, UNESP, Botucatu/SP and a commercial facility, located in Santa Cruz do Rio Pardo/SP. For simulations were used the Autodesk® CFD Simulation software along with AutoCAD 3D (facilities design). Thermal comfort conditions were analyzed by means of predicted mean vote – PMV. In simulated commercial facility was observed that side vents are not sufficient to establish a thermal comfort condition, according to PMV. With computational fluid dynamic was possible to change the environment through air flow increase, showing to be a solution in decrease of air temperature and reach of thermal comfort condition.KEYWORDS: Thermal comfort, swine welfare, computational fluid dynamic, CFD, simulators.


2013 ◽  
Vol 483 ◽  
pp. 234-237
Author(s):  
Bao Qing Wang ◽  
Ze Bei Wang ◽  
Yang Yang Li ◽  
Rong Hui Chen ◽  
Shu Yao

Performance of aerosol sampling inlet for different diffuser outlet angle is compared with its velocity and pressure distribution. To get information on velocity and pressure distribution for different outlet angle, Computational Fluid Dynamic (CFD) simulation can be used. At the same time, it can achieve high efficiency of aerosol sampling and minimize disturbance to the aircraft which carries the system. The final design for the sampling inlet is determined to be a design with diffuser outlet angle of 15 degree. This design was selected to keep stable for velocity and pressure, and have a less length.


2021 ◽  
Vol 2120 (1) ◽  
pp. 012010
Author(s):  
J Tan ◽  
N Z Abu Bakar

Abstract The purpose of an airbox is to provide the engine with a clean air flow for combustion. The high velocity of the fluid flow across the airbox will create a pressure drop resulting a decline in the vehicle’s performance. This project collaborates with an Original Equipment Manufacturer (OEM) to develop a numerical simulation model for a new airbox design and to compare its pressure drop with OEM production design. Reducing the pressure drop across the airbox can increase the efficiency of a vehicle, hence, reducing CO2 emissions. This research focuses on the passenger type vehicle as it is the highest source of carbon dioxide (CO2) being emitted for road transportation and these pollutant emissions have also caused many health problems on human. ANSYS Fluent program was used to carry out Computational Fluid Dynamics (CFD) simulation for both OEM and the new design. Then, the same simulation setup was used for the new design. The inlet size of the new design is larger when compared to the OEM design. After analysing both models, it was determined that the main reason behind the pressure loss was caused by the shape of the airbox and turbulent flow inside. The new airbox design shows reduction of 96% in the pressure drop within it and in return, enhancing the performance of the passenger vehicle. This conclude that numerical simulation model is able to provide a good indicator for the designer to choose the best design and proceed with fabrication and conduct actual test, thus saving a lot of prototyping and repeated testing cost.


2021 ◽  
pp. 859-867
Author(s):  
Thai Hien Nguyen ◽  
Ngoc An Dang Nguyen ◽  
Quoc Khai Le ◽  
Anh Tu Tran ◽  
Thanh Nha Nguyen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document