scholarly journals Design improvement of an airbox for a passenger vehicle

2021 ◽  
Vol 2120 (1) ◽  
pp. 012010
Author(s):  
J Tan ◽  
N Z Abu Bakar

Abstract The purpose of an airbox is to provide the engine with a clean air flow for combustion. The high velocity of the fluid flow across the airbox will create a pressure drop resulting a decline in the vehicle’s performance. This project collaborates with an Original Equipment Manufacturer (OEM) to develop a numerical simulation model for a new airbox design and to compare its pressure drop with OEM production design. Reducing the pressure drop across the airbox can increase the efficiency of a vehicle, hence, reducing CO2 emissions. This research focuses on the passenger type vehicle as it is the highest source of carbon dioxide (CO2) being emitted for road transportation and these pollutant emissions have also caused many health problems on human. ANSYS Fluent program was used to carry out Computational Fluid Dynamics (CFD) simulation for both OEM and the new design. Then, the same simulation setup was used for the new design. The inlet size of the new design is larger when compared to the OEM design. After analysing both models, it was determined that the main reason behind the pressure loss was caused by the shape of the airbox and turbulent flow inside. The new airbox design shows reduction of 96% in the pressure drop within it and in return, enhancing the performance of the passenger vehicle. This conclude that numerical simulation model is able to provide a good indicator for the designer to choose the best design and proceed with fabrication and conduct actual test, thus saving a lot of prototyping and repeated testing cost.

2020 ◽  
Vol 310 ◽  
pp. 00039
Author(s):  
Kamila Kotrasova ◽  
Vladimira Michalcova

The numerical simulation of flow process and heat transfer phenomena demands the solution of continuous differential equation and energy-conservation equations coupled with the continuity equation. The choosing of computation parameters in numerical simulation of computation domain have influence on accuracy of obtained results. The choose parameters, as mesh density, mesh type and computation procedures, for the numerical diffusion of computation domain were analysed and compared. The CFD simulation in ANSYS – Fluent was used for numerical simulation of 3D stational temperature flow of the computation domain.


Author(s):  
B. Tantaro ◽  
Y. T. Wah ◽  
R. W. Y. Yuen

Piping serves as an important pillar in most of the engineering applications while the quantification on the pressure drop due to various factors is always the central issue of efficient piping maintenance and design. In this study, the relationship between the pressure drop and the percentage of blockage in Hagen-Poiseuille flow is investigated. The analysis is executed using CFD commercial software of ANSYS Fluent. Our simulation discovered that the pressure drop will increase in an exponential manner with respect to constant increment of the blockage percentage. In other words, the power waste will increase exponentially too when the clot accumulates.


2010 ◽  
Vol 26-28 ◽  
pp. 1190-1194 ◽  
Author(s):  
Y. Wang ◽  
K.C. Williams ◽  
M.G. Jones ◽  
B. Chen

The pressure drop predictions across a bypass pipeline in dense phase pneumatic conveying were investigated numerically. The simulation was conducted using the commercial Computational Fluid Dynamic (CFD) software Fluent with the Euler- Euler model accounting for four-way coupling. Experiments and calculations were conducted using flyash powder conveyed in a horizontal pipeline. The influence of the pipe length on pressure drop prediction was also investigated. The results indicate that pressure prediction of the CFD simulation model for a bypass pipe is promising. The conclusion is that this investigation can offer improved insight and initial design modelling capability for bypass pneumatic conveying systems.


Author(s):  
Zefang Liu ◽  
Xiang Gao ◽  
Miad Karimi ◽  
Bradley Ochs ◽  
Vishal Acharya ◽  
...  

Current research on supercritical carbon dioxide (SCO2) oxy-combustion is lacking studies on the performance of kinetic models. An optimized 13 species kinetic model is proposed in the present work for CH4/O2/CO2 oxy-combustion. This 13 species kinetic model is developed based on the detailed USC Mech II mechanism with the Global Pathway Selection algorithm, and then optimized with a genetic algorithm covering conditions of pressure from 150 atm to 300 atm, temperature from 900 K to 1800 K and equivalence ratio from 0.7 to 1.3. The autoignition of 13 species kinetic model presents less than 12% error relative to that of the USC Mech II. The performance of the proposed kinetic model is evaluated using a generic jet in crossflow combustor. Simulations at identical conditions are conducted in ANSYS Fluent for both the 13 species model and a global 5 species model. Results were then compared to evaluate the sensitivity of these two kinetic models to the CFD simulations. The results show a better mixing between the fuel and the oxygen, a longer autoignition delay and a more reasonable temperature distribution using the 13 species kinetic model. It is indicating the importance of choice on kinetic models in numerical simulation.


2020 ◽  
Vol 14 (2) ◽  
pp. 6610-6624 ◽  
Author(s):  
Om Parkash Verma ◽  
Arvind Kumar ◽  
Basant Singh Sikarwar

Transportation of solids with water as a carrier in the form of slurry through long length pipelines is widely used by many industries and power plants. The transportation of slurry through vertical pipeline is a challenging task and require modification to overcome the pressure loss and power consumption requirements. In this perspective, numerical simulation of three-dimensional horizontal slurry pipeline (HSPL) and vertical slurry pipeline (VSPL) carrying glass beads solid particulates of spherical diameter 440 µm and density 2,470 kg/m3 is carried out. The 3D computational model for horizontal and vertical slurry pipeline is developed for a pipe of 0.0549 m diameter and analyzed in available commercial software ANSYS Fluent 16. The simulation is conducted by using Eulerian multiphase model with RNG k-ɛ turbulence closure at solid concentration range 10 – 20% (by volume) for mean flow velocities ranging from 1-4 ms-1. It is found that the pressure drop rises for both HSPL and VSPL with escalation in mean flow velocity and solid concentration. The predicted pressure drop in VSPL is found to follow the same pattern as with HSPL but higher in magnitude for all chosen velocity and solid concentration range. The obtained results of predicted pressure drop in HSPL are validated with the available experimental data in the literature. A parametric study is conducted with the aim of visualizing and understanding the slurry flow behavior in HSPL and VSPL. Finally, the results of solid concentration contour, velocity contour, solid concentration profiles, velocity profiles and pressure drop are predicted for both the slurry pipelines.


2016 ◽  
Vol 15 (2) ◽  
pp. 76
Author(s):  
F. S. Nascimento ◽  
M. A. R. Nascimento ◽  
C. J. R. Coronado ◽  
L. O. Rodrigues ◽  
J. A. Carvalho Jr ◽  
...  

The oxy-combustion has generated significant interested for reduction of CO2 emission when the fossil fuel is coal, due to simplification on the separation process of CO2 from the flue gas, it can be more easily stored in reservoir. The CFD numerical simulation techniques in oxy-coal combustion has the potential to contribute to designers in cost savings and reduced computational time; Furthermore, such techniques also provide a robust tool for better understanding and description of the aerothermodynamics processes involved, as well as, aiding the design of most efficient furnaces. However, to obtain representative results of the physical phenomena, the numerical models employed by CFD needs to be suitable for oxy-coal combustion. So, the aim of the paper is to carry out a review of the recent models that are being used for turbulence, combustion and pollutant emissions. Moreover, it is shown a comparison of different results obtained in the numerical simulation of oxy-coal combustion among new models, existing models and experiments. The analysis of the models and experiments shows that the challenges that are still being faced to obtain better accuracy of numerical simulation results. Improvements in the models for oxy-coal combustion can be seen like potential opportunities to investigate and optimize the process that occur in the combustion.


Author(s):  
João Silva ◽  
Lelis Fraga ◽  
Manuel Eduardo Ferreira ◽  
Sergio Chapela ◽  
Jacobo Porteiro ◽  
...  

In a domestic boiler that uses pellets as fuel, it is important to control the efficiency of the combustion process. The combustion process in the boiler is a complex process that involves several and simultaneous phenomena such as fluid flow, physical and chemical reactions and heat and mass transfer. Computational Fluid Dynamics (CFD) modeling in combination with detailed sub-models for the solid fuel conversion is a useful tool to study the combustion performance and to study, for instance, the pollutant emissions. This paper presents the CFD simulation of the combustion in a 20 kW pellet boiler using the ANSYS Fluent software with a fully integrated packed-bed model. Furthermore, an experimental test was performed to contrast the results obtained. The CFD results were able to predict the arrangement of the particles on the grate, temperature profile of the particles and, the main gas species concentration inside of the boiler with reasonable accuracy when compared with the experimental measurements.


2013 ◽  
Vol 788 ◽  
pp. 228-232
Author(s):  
Zhuo Lun Cen ◽  
Ji Gang Zhao ◽  
Ben Xian Shen

Hydrocyclones provide an economic and efficient process of separation in many industries, but there has been little detailed understanding of the strong swirling flow prevailing inside the device, especially the complex inner vortex. This work presented a computational fluid dynamics (CFD) simulation to predict and to evaluate the effects of inlet velocity and the diameter of overflow tube on the inner vortex. The calculation was carried out using commercial CFD code Ansys Fluent 14.0. The results obtained demonstrates both an overlarge inlet velocity and a too small diameter of overflow tube lead to a severe backmixing at the head of hydrocyclone, moreover the latter results in a disorder and unstructured inner vortex.


2013 ◽  
Vol 752 ◽  
pp. 157-166 ◽  
Author(s):  
Csaba Nagy ◽  
Arnold Rónaföldi ◽  
András Roósz

A measurement of the angular velocity/revolution number of magnetically stirred liquid gallium-indium alloy was realized with newly developed angular velocity measuring equipment. To get additional information about the flow of the melt, a numerical simulation model was performed with ANSYS FLUENT 13.0 with a single phase 2D k-ε turbulence solver. The aim was to reproduce the flow as accurate as possible, so the measured and computed angular velocity data was compared, to see if the system can be modeled fairly well.


2022 ◽  
Vol 28 (1) ◽  
pp. 76-85
Author(s):  
Aya kh. Shaheed ◽  
Riyadh Z. Azzubaidi

This study aims to numerically simulate the flow of the salt wedge by using computational fluid dynamics, CFD. The accuracy of the numerical simulation model was assessed against published laboratory data. Twelve CFD model runs were conducted under the same laboratory conditions. The results showed that the propagation of the salt wedge is inversely proportional to the applied freshwater discharge and the bed slope of the flume.  The maximum propagation is obtained at the lowest discharge value and the minimum slope of the flume. The comparison between the published laboratory results and numerical simulation shows a good agreement. The range of the relative error varies between 0 and 16% with an average of 2% and a root mean square error of 0.18. Accordingly, the CFD software is quite valid to simulate the propagation of the salt wedge. 


Sign in / Sign up

Export Citation Format

Share Document