Coupled Numerical Simulation Research on Dewatering and Land Subsidence in Deep Foundation Pit

2013 ◽  
Vol 275-277 ◽  
pp. 1549-1552 ◽  
Author(s):  
Dong Dong Zhang

With the construction of deep and large foundation pit, land subsidence disasters caused by dewatering in deep foundation pit become very serious. Using the coupled model of foundation pit dewatering and land subsidence and putting it into foundation pit dewatering construction, analyzes and summarizes the effect of land subsidence in space and time, which will provide references for the design and construction of foundation pit dewatering.

2010 ◽  
Vol 114 (3-4) ◽  
pp. 251-260 ◽  
Author(s):  
Nianqing Zhou ◽  
Pieter A. Vermeer ◽  
Rongxiang Lou ◽  
Yiqun Tang ◽  
Simin Jiang

2014 ◽  
Vol 638-640 ◽  
pp. 507-511
Author(s):  
Chong Ma ◽  
Xin Gang Wang ◽  
Bin Hu ◽  
Hong Bing Zhan

The rapid development of deep foundation pit engineering, has become an important part of the urbanization construction, which brings deep excavation support of geotechnical engineering problem research also became a major issue. This paper uses the international well-known geotechnical engineering numerical simulation software FLAC3D, through 3D finite difference numerical calculation and analysis, to better simulation calculation and analysis of deep foundation pit construction site condition, forecast after excavation of the deep foundation pit deformation displacement and dangerous position, analysis of deep foundation pit excavation process isolation pile - steel shotcrete combined support effect. Three dimensional numerical model analysis and calculation in deep foundation pit engineering design and construction scheme optimization with economy is convenient wait for a obvious advantages, can for deep foundation pit excavation of deep foundation pit support design and construction to provide effective basis.


2015 ◽  
Vol 744-746 ◽  
pp. 579-583
Author(s):  
Hui Min Wang ◽  
Zhen Jian Ji ◽  
Liang Cao ◽  
Ji Yao ◽  
Shan Guang Qian

Deep Pit is the main content of modern urban geotechnical engineering. In this paper, based on a deep foundation pit engineering as an example, based on the nonlinear finite element theory, conduct a numerical simulation research for foundation pit excavation process. Obtained the distribution law of pit deformation, stress distribution and the supporting structure of the internal forces, under the various processes. These provide a theoretical basis for safety evaluation of foundation pit engineering.


2011 ◽  
Vol 243-249 ◽  
pp. 6093-6096
Author(s):  
Ding Tang Wang

Combined with a specific foreign-related project and based on the detailed report of the engineering geological investigation, this paper describes the application of the selected support structures of shotcrete-bolt and bored piles with high pressure rotary jet grouting waterproof curtain from aspects of scheme optimizing, design and construction, underground watertable lowering and result monitoring. Satisfactory achievements have been made in cost saving, shortening duration, facilitating construction and environmental protection etc. It demonstrates that two or multiple support systems can be used simultaneously in one foundation pit as support structure.


2013 ◽  
Vol 353-356 ◽  
pp. 159-162
Author(s):  
Li Liu ◽  
Hong Ru Zhang ◽  
Rui Yu Zhang

The excavation of deep foundation pit by numerical simulation is researched in this paper. Different locations of soil are selected to be as test points. Under two velocities, the law of total displacements that reflect the test points in the same locations is discussed. The variation tendency of the pore pressure under the rapid construction and tendency of the volume change under the normal construction are compared. The soil is divided to three parts in numerical simulation: the side, the bottom I and the bottom II of the foundation. The numerical results are as follows: the total displacement of the rapid construction is double for ones of the normal construction, which is on the side and the bottom I of deep foundation pit. Under the different drainage conditions, the soil on the side of deep excavation experiences the dilatancy, and then the shear-contraction, and then the dilatancy; the soil on the bottom II of deep excavation experiences the dilatancy and then the shear-contraction. The soil on the bottom I experiences the dilatancy under the normal construction; but it experiences the dilatancy and then the shear-contraction under the rapid construction.


2012 ◽  
Vol 268-270 ◽  
pp. 673-676
Author(s):  
Ji Nan Zou ◽  
Bei Te Cai ◽  
Hong Wei

This paper takes example of a foundation pit in Haikou, analyzing the influence on the surrounding buildings in the course of the excavation depth, daily rainfall, foundation form of the building and other factors. The results show that the excavation depth and strong rainfall may lead large deformation of the surrounding buildings, and the deep foundation pit has obvious effect on surrounding building with shallow foundation. Therefore, those factors should be considered adequately in the design and construction of deep foundation pit


Sign in / Sign up

Export Citation Format

Share Document