Comparison and Analysis of Influence of Soil Deformation on the Speeds of Execution for Deep Foundation Pits

2013 ◽  
Vol 353-356 ◽  
pp. 159-162
Author(s):  
Li Liu ◽  
Hong Ru Zhang ◽  
Rui Yu Zhang

The excavation of deep foundation pit by numerical simulation is researched in this paper. Different locations of soil are selected to be as test points. Under two velocities, the law of total displacements that reflect the test points in the same locations is discussed. The variation tendency of the pore pressure under the rapid construction and tendency of the volume change under the normal construction are compared. The soil is divided to three parts in numerical simulation: the side, the bottom I and the bottom II of the foundation. The numerical results are as follows: the total displacement of the rapid construction is double for ones of the normal construction, which is on the side and the bottom I of deep foundation pit. Under the different drainage conditions, the soil on the side of deep excavation experiences the dilatancy, and then the shear-contraction, and then the dilatancy; the soil on the bottom II of deep excavation experiences the dilatancy and then the shear-contraction. The soil on the bottom I experiences the dilatancy under the normal construction; but it experiences the dilatancy and then the shear-contraction under the rapid construction.

2011 ◽  
Vol 255-260 ◽  
pp. 3802-3806
Author(s):  
Xiang Dong Zhang ◽  
Shuang Zhang

Based on the deep foundation pit project of Wanbang Square in Qingdao, after many times numerical simulation of foundation pit with ADINA, the relationship conclusions were summed up by changing parameters of anchor rope and excavation step: The horizontal displacements of shoring structure became smaller by making the length of anchor rope longer or making the number of anchor ropes more or making the excavation step more; the uplift of the bottom of the foundation became smaller and the sedimentation of the surface became smaller by making the excavation steps more. It can offer reference to optimization of foundation pit supporting structural scheme.


2010 ◽  
Vol 114 (3-4) ◽  
pp. 251-260 ◽  
Author(s):  
Nianqing Zhou ◽  
Pieter A. Vermeer ◽  
Rongxiang Lou ◽  
Yiqun Tang ◽  
Simin Jiang

2011 ◽  
Vol 243-249 ◽  
pp. 2338-2344
Author(s):  
Qing Yuan Li ◽  
Yang Wang

Taking deep excavation engineering in North Region of Senlin Park Station of Beijing Olympic Subway branch as engineering background, deformation law of enclosure structure of deep excavation are studied by the in-situ monitoring means .It shows that the maximum horizontal displacement of retaining pile is closely related with excavation depth and time. When the deep foundation pit is excavated to a certain depth, and steel brace hasn’t been erected, horizontal displacement of the pile tops is maximum. The location of the maximum horizontal displacement shifts down with foundation pit excavation and steel brace erection. With steel brace application, steel axis force decrease, so steel brace can effectively control horizontal displacements of retaining pile and internal force of steel in the pile. In addition, temperature has a certain effect to axis force of steel brace.


2014 ◽  
Vol 638-640 ◽  
pp. 507-511
Author(s):  
Chong Ma ◽  
Xin Gang Wang ◽  
Bin Hu ◽  
Hong Bing Zhan

The rapid development of deep foundation pit engineering, has become an important part of the urbanization construction, which brings deep excavation support of geotechnical engineering problem research also became a major issue. This paper uses the international well-known geotechnical engineering numerical simulation software FLAC3D, through 3D finite difference numerical calculation and analysis, to better simulation calculation and analysis of deep foundation pit construction site condition, forecast after excavation of the deep foundation pit deformation displacement and dangerous position, analysis of deep foundation pit excavation process isolation pile - steel shotcrete combined support effect. Three dimensional numerical model analysis and calculation in deep foundation pit engineering design and construction scheme optimization with economy is convenient wait for a obvious advantages, can for deep foundation pit excavation of deep foundation pit support design and construction to provide effective basis.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Huifen Liu ◽  
Kezeng Li ◽  
Jianqiang Wang ◽  
Chunxiang Cheng

Based on the deep foundation pit project of Laoguancun station of Wuhan rail transit line 16 and according to the engineering characteristics of the construction conditions and the site surrounding the environment, the method of combining field monitoring and finite element numerical simulation is adopted to analyze the law of stress and deformation of the deep foundation pit during excavation and support construction; it includes the horizontal displacement of the underground diaphragm wall, supporting axial force, and the ground surface settlement, which can be compared with measured data. Finally, some suggestions for monitoring and construction of the deep foundation pit in the subway station have been put forward and have certain reference value and practical guiding significance for the design and construction of similar engineering projects. The deformation monitoring of the retaining structure at the middle of the long side of the foundation pit should be strengthened during the construction process.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zhongjing Hu ◽  
Qingbiao Wang ◽  
Shuo Yang ◽  
Zhenyue Shi ◽  
Bo Liu ◽  
...  

Advancing urbanization in China requires large-scale high-rise construction and underground transportation projects. Consequently, there is an increasing number of deep foundation pits adjacent to water bodies, and accidents occur frequently. This study uses a numerical simulation method to study the stability of the deep foundation pit near water based on the Biot three-dimensional seepage-stress coupling model, with the open-cut section on the south bank of the Jinan Yellow River Tunnel Project as the engineering field test. This indicates the following: (1) the maximum horizontal displacement of the diaphragm wall occurred in the fifth excavation stage, and a horizontal brace effectively controlled the inward horizontal displacement of the foundation pit; (2) considering the effect of seepage in the soft soil foundation, the maximum vertical displacement of the ground surface at each excavation stage occurred adjacent to the underground continuous wall. As the depth of the foundation pit increased, the vertical surface settlement decreases gradually in the direction away from the excavation face; (3) considering the seepage conditions, within each interval of excavation of the foundation pit, the horizontal displacement of the continuous underground wall and ground settlement declined; and (4) the numerical simulation and field monitoring data were in good agreement. Under the conditions of accurate model simplification and parameter selection, numerical simulations can adequately forecast conditions of the actual project.


2011 ◽  
Vol 71-78 ◽  
pp. 631-634
Author(s):  
Ling Bo Dang ◽  
Lei Shun Zhang

An internal supporting structure because of its low cost, construction speed, and high efficiency in the construction of municipal works in the deep foundation pit enjoys a great advantage. In this paper, ZhongYuan West Road, the actual construction of water pipeline project, describes the mechanical characteristics,the design and construction of the internal supporting structure, It is summarized for an internal supporting structure in deep excavation of accumulated experience.


2014 ◽  
Vol 1021 ◽  
pp. 96-99
Author(s):  
Jia Yang Wang ◽  
Xiao Qiang Wang

According to the building settlement monitoring around the base pit, research the deep base pit excavation impacting on the surrounding buildings. Take Hefei subway station base pit project as example, by way of an adjacent residential building whole process of excavation monitoring, research the impact of deep excavation on the surrounding buildings. Timely feedback to the construction unit, to ensure the smooth construction of pit, and provides a reference to design and construction of deep foundation pit.


Sign in / Sign up

Export Citation Format

Share Document