Cell Planning for Base Station in Mobile Communication Using an Improved Genetic Algorithm

2013 ◽  
Vol 284-287 ◽  
pp. 2699-2703 ◽  
Author(s):  
Hung Jen Liao ◽  
Chun Hung Richard Lin ◽  
Kuang Yuan Tung ◽  
Ying Chih Lin ◽  
Cheng Fa Tsai ◽  
...  

Cell planning problem is one of the most important issues in mobile communication networks. To tackle the problem, one should address the location management issue because it significantly affects the cost of cell planning in mobile networks. The partition of location areas is developed to minimize the total costs of considering user location and search operation simultaneously in cellular networks, which has been shown to be NP-complete and is commonly solved by metaheuristics in previous works. In this paper, we propose novel cell planning methods for base stations using genetic algorithms with initialization, local search, and particular mechanisms of area and cell crossovers. Several simulations are conducted on various cell networks with previous, random and real configurations. The simulation results reveal that our schemes are superior to the considered algorithms.

2021 ◽  
Vol 19 (2) ◽  
pp. 41-48
Author(s):  
Yu. V. Nemtsov ◽  
I. V. Seryogin ◽  
P. I. Volnov

Base station (BS) is a terminal device of a radio communication network, while railway radio communications play an important role in ensuring safety of passenger and cargo transportation.A proposed method for calculating the performance of base stations in railway digital radio communication networks is intended to calculate for the BS the probabilities of being in certain state.BS was decomposed and such functional elements as circuit groups and a radio frequency path were identified, as well as the central module ensuring the exchange of information with elements of this BS and with other BSs. A detailed study of each element has increased accuracy of the proposed method. Following the Markov model, BS is presented as a system in which all possible states are considered. Models for BS with two and three circuit groups have been constructed. The parameters of each functional element of the model can be obtained through observation over a certain period. The solution of the system of equations for each of the models presented in the article will allow obtaining the values of the system being in a certain state. The obtained characteristics can be used to calculate the reliability of the entire radio communication network, and then to assess quality of service provided to the users of this network.Conclusions are made about the possibilities of using the obtained models when designing new railway communication networks and when calculating quality indices of existing ones. The proposed models can be applied not only to railway radio communication networks but also to mobile communication networks of commercial operators. 


2020 ◽  
Vol 10 (14) ◽  
pp. 4795
Author(s):  
Mohammad Hossein Kakueinejad ◽  
Azim Heydari ◽  
Mostafa Askari ◽  
Farshid Keynia

With the increasing number of population and the rising demand for electricity, providing safe and secure energy to consumers is getting more and more important. Adding dispersed products to the distribution network is one of the key factors in achieving this goal. However, factors such as the amount of investment and the return on the investment on one side, and the power grid conditions, such as loss rates, voltage profiles, reliability, and maintenance costs, on the other hand, make it more vital to provide optimal annual planning methods concerning network development. Accordingly, in this paper, a multilevel method is presented for optimal network power expansion planning based on the binary dragonfly optimization algorithm, taking into account the distributed generation. The proposed objective function involves the minimization of the cost of investment, operation, repair, and the cost of reliability for the development of the network. The effectiveness of the proposed model to solve the multiyear network expansion planning problem is illustrated by applying them on the 33-bus distribution network and comparing the acquired results with the results of other solution methods such as GA, PSO, and TS.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Michel Matalatala ◽  
Margot Deruyck ◽  
Emmeric Tanghe ◽  
Luc Martens ◽  
Wout Joseph

Massive MIMO techniques are expected to deliver significant performance gains for the future wireless communication networks by improving the spectral and the energy efficiencies. In this paper, we propose a method to optimize the positions, the coverage, and the energy consumption of the massive MIMO base stations within a suburban area in Ghent, Belgium, while meeting the low power requirements. The results reveal that massive MIMO provides better performances for the crowded scenario where users’ mobility is limited. With 256 antennas, a massive MIMO base station can simultaneously multiplex 18 users at the same time-frequency resource while consuming 8 times less power and providing 200 times more capacity than a 4G reference network for the same coverage. Moreover, a pilot reuse pattern of 3 is recommended in a multiuser multicell environment to obtain a good tradeoff between the high spectral efficiency and the low power requirement.


2020 ◽  
Vol 10 (12) ◽  
pp. 4409
Author(s):  
Wei Kuang Lai ◽  
Chin-Shiuh Shieh ◽  
Fu-Sheng Chou ◽  
Chia-Yu Hsu ◽  
Meng-Han Shen

This study addresses the handover management issue for Device-to-Device communication in fifth-generation (5G) networks. The Third Generation Partnership Project (3GPP) drafted a standard for proximity services (ProSe), also named device-to-device (D2D) communication, which is a promising technology in offering higher throughput and lower latency services to end users. Handover is an essential issue in wireless mobile networks due to the mobility of user equipment (UE). Specifically, we need to transfer an ongoing connection from an old E-UTRAN Node B (eNB) to a new one, so that the UE can retain its connectivity. In the data plane, both parties of a D2D pair can communicate directly with each other without the involvement of the base station. However, in the control plane, devices must be connected to the eNB for tasks such as power control and resource allocation. In the current standard of handover scheme, the number of unnecessary handovers would be increased by the effect of shadowing fading on two devices. More important, the handover mechanism for D2D pairs is not standardized yet. LTE-A only considers the handover procedure of a single user. Therefore, when a D2D pair moves across cell boundaries, the control channels of the two UEs may connect to different base stations and result in increased latency due to the exchange of D2D related control messages. Hence, we propose a handover management scheme for D2D communication to let both parties of a D2D pair handover to the same destination eNB at the same time. By doing so, the number of unnecessary handovers, as well as the handover latency, can be reduced. In the proposed method, we predict the destination eNB of D2D users based on their movements and the received signal characteristics. Subsequently, we make a handover decision for each D2D pair by jointly factoring in the signal quality and connection stability. Expected improvement can be attained, as revealed in the simulation. Unnecessary handover can be avoided. Consequently, both UEs of a D2D pair reside in the same cell and, therefore, result in increased throughput and decreased delay.


2021 ◽  
Author(s):  
Mobasshir Mahbub ◽  
Bobby Barua

Abstract Advancements of cellular networks such as 4G and 5G proposed the collaboration of small-cell technologies in mobile networks and constructed a heterogeneous network (HetNet) for collaborative connectivity. There are many benefits of small-cell-based collective communication such as the increase of device capability in indoor/outdoor locations, enhancement of wireless coverage, improved signal efficiency, lower implementation costs of gNB (Next-generation Base Station introduced in 5G), etc. The integration of small-cells by deploying low-power BSs (base stations) in conventional macro-gNBs was investigated as a convenient and economical way of raising the potentials of a cellular network with high demand from consumers. The fusion of small-cells with macro-cells offers increased coverage and capacity for heterogeneous networks. Therefore, the research aimed to realize the performance of a small-cell deployed under a macro-cell in a two-tier heterogeneous network. The research first modified the reference equation for measuring the received power by introducing the transmitter and receiver gain. The paper then measured the SINR, throughput, spectral efficiency, and power efficiency for both downlink and uplink by empirical simulation. The research further enlisted the notable outcomes after examining the simulation results and discussed some relevant research scopes in the concluding sections of the paper.


Author(s):  
Yong Liao ◽  
Yufeng Li ◽  
Shumin Zhang ◽  
Ming Zhao ◽  
Xin Zhou ◽  
...  

For the coexistence and increasing interference of satellite-terrestrial network and terrestrial wireless network, we analyze a typical scenario where the GEO satellite-terrestrial network and the 4G mobile communication network coexist heterogeneously. Besides, a multi-user cognitive system model that secondary satellite terminals interfere the primary MIMO 4G base stations is also proposed, with whose general signal processing is deduced. Meanwhile, DBF technology in 4G base station system is adopted to minimize the cognitive interference caused by multi-antennas and multi-users. And we propose an OBW-FAI. Weight vector is only related to the azimuth of the interferences, thus the proposed algorithm does not need real-time and repeat calculations, and has small complexity. Finally, the numerical simulation results verify that the proposed system and algorithm can effectively reduce interference between satellite-terrestrial network and terrestrial wireless network to a certain extent.


Author(s):  
Е.Е. ДЕВЯТКИН ◽  
М.В. ИВАНКОВИЧ ◽  
С.В. ШВЕЦ ◽  
Т.А. СУХОДОЛЬСКАЯ

Представлен подход к формированию порядка определения и применения показателей и индикаторов стадий жизненного цикла поколений сетей подвижной связи (СПС) в их эволюционном развитии. Подтверждена необходимость использования этих инструментов в решении прикладных вопросов регуляторного, нормативно-правового и других видов обеспечения для упреждающей разработки мероприятий, обуславливающих возможность внедрения СПС с учетом сложившихся национальных регуляторных процедур. Показана взаимообусловленная связь и приведено соотношение поколений СПС с поколениями социотехнических систем. An approach to the formation of the procedure for determining and applying indexes and indicators of the stages of the life cycle of generations of cellular mobile communication networks in their evolutionary development is presented. It is shown that it is necessary to use these indexes and indicators in solving applied issues of regulatory and other types of support to enable the proactive development of measures that determine the possibility of implementing the mobile networks, taking into account the existing national regulatory procedures. A mutually dependent relationship is presented, and the ratio of generations of mobile communication networks with generations of socio-technical systems is given.


2011 ◽  
Vol 467-469 ◽  
pp. 1662-1667
Author(s):  
Yi Shun Weng ◽  
Yi Sheng Huang

In mobile cellular networks, the mobile devices need to handoff to different base stations based on certain criteria. And also fuzzy Petri nets can support an effective rule to deduce the inexact information. Based on the reasons, this paper focuses on the use of fuzzy Petri nets to model the handoff region for obtaining optimal channel assignment schemes. In this paper, a fuzzy logic based scheme for selection of base station is presented. The scheme considers two cover regions, namely, dual-BSs fuzzy assignment handoff and triple-BSs fuzzy assignment handoff of each base station to arrive at a fuzzy handoff decision regarding handoff to any particular base station. For comparison, the conventional power level based handoff scheme is also considered.


Sign in / Sign up

Export Citation Format

Share Document