Optimal Design and Experimental Study on 500SM35 Type Centrifugal Pump

2010 ◽  
Vol 29-32 ◽  
pp. 1003-1007
Author(s):  
Ming Wei Hou

To make the high efficiency and energy-saving centrifugal pump, using multi-objective optimization design to make hydraulic design of the 500SM35 centrifugal pumps, using CFD technology to simulate the three-dimensional turbulence flow in pump, also make performance experiment and cavitation experiment of the 500SM35 centrifugal pump that have been self-developed. Experimental studies have shown that: the 500SM35 centrifugal pump’s prototype performance parameters all beyond design specification.

Author(s):  
Yiyun Wang ◽  
Ji Pei ◽  
Shouqi Yuan ◽  
Wenjie Wang

Two-stage split case centrifugal pumps play an important role in large flow rate and high lift water transfer situations. To investigate the influence of baffles in between stages on the performance and internal flow characteristics, the unsteady simulations for the prototype pump were carried out by solving the three-dimensional Reynolds-averaged Navier-Stokes equations with a shear stress transport (SST) turbulence model. The structured grids were generated for the whole flow passage. The calculated performance results were verified by the experimental measurements. The entropy production method based on numerical simulation was applied to analyze the distribution and mechanism of flow losses. The results show that the turbulence dissipation is the dominant flow loss, and the viscous dissipation can be neglected. The baffles can reduce the turbulence dissipation power obviously and can improve the hydraulic efficiency by maximum 5%, especially under QBEP and over-load conditions. The baffles have the greatest effect on the hydraulic losses in the double suction impeller., because they change the flow characteristics in the channels between the first stage impeller and the double suction impeller, affecting the inflow condition dramatically for the impeller. The study can give a reference to optimize the design of the two-stage split case centrifugal pump for high efficiency.


Author(s):  
Ran Tao ◽  
Ruofu Xiao ◽  
Di Zhu ◽  
Fujun Wang

Double suction centrifugal pumps are widely used for water supplying system. In this study, the original design of a double centrifugal pump lacked sufficient head at the design flow rate condition. Therefore, the most important objective was to optimize the design to improve the head. A strategy inspired by “liquid–gas cavitation process” is innovatively used for intelligent global search of better pump designs with both higher head and wider-higher efficiency. This strategy has advantages including flexibility, parallelism, and feasibility on overstepping the local-best. The computational fluid dynamics and artificial neural network are used. It helps this optimization to find unknown points in the non-linear and multi-dimensional searching space, and accelerate the optimization process. Candidates were found after search, and the best one was chosen using Pareto principle. Experimental and numerical studies verify that the optimized impeller meets the requirement of head. The efficiency is also significantly improved with higher best efficiency and wider high efficiency range than original design. The critical cavitation is also improved at design condition. This study provides an effective strategy and a good solution for multi-objective optimization of double suction centrifugal pumps. Moreover, this study provides references for the combination of optimizations with artificial intelligence especially in the pump’s design.


Author(s):  
Yun Xu ◽  
Lei Tan ◽  
Shuliang Cao ◽  
Wanshi Qu

Optimization design of centrifugal pumps involving multiple parameters and objectives is a complicated research topic. The orthogonal method is introduced in the present study to find a high efficiency and low cost way in the optimization process of a centrifugal pump. A orthogonal table designation L16(45) is established, in which 16 individuals of impellers are generated with five design parameters: blade wrap angle, blade angles at impeller inlet and outlet, blade leading edge position, and blade trailing edge lean varying at four levels for each parameter. To realize the multiobjective optimization of both pump efficiency and cavitation performance, an integrated factor considering the weight of two objectives is introduced. On the basis of validated computational fluid dynamics (CFD) technique, the range analysis gives the influence order of five parameters and also determines the value of each parameter. Finally, the optimal centrifugal pump is obtained with remarkable superiority on the efficiency of 3.09% rise and cavitation performance of 1.45 m promotion in comparison with the original pump.


Author(s):  
Jinfeng Zhang ◽  
Ye Yuan ◽  
Shouqi Yuan ◽  
Weigang Lu ◽  
Jianping Yuan

For a low specific speed centrifugal pump with the requirement of high efficiency of 68% and non-overload power characteristics, series experimental studies, by matching 9 volutes with 19 impellers were done. By combining the former research results about the splitters and the non-overload theory in centrifugal pump, the theoretical conditions to achieve the property of non-overload in a centrifugal pump with splitters was analyzed, and formulas to estimate the maximum shaft power and its position are derived. Based on the requirement of high efficiency and non-overload, blade outlet angle β2, blade outlet width b2, volute throat are Ft and the inlet diameter of splitters Di were chosen with three levels to design a normal L9 (34) orthogonal test scheme. After the optimized design scheme was determined, and corresponding test was done also, it demonstrates that the experiment purpose was achieved and the design method to combine the splitters and non-overload theory is reasonable, which can get the property of high efficiency and non-overload. A BP artificial neural network (BPANN) model was built to predict the efficiency and head of centrifugal pumps with splitters in MATLAB toolbox. Eighty five groups of test results were used to train and test the network model, where the Levenberg–Marquardt algorithm was adopted to train the neural network model. Five parameters Q, Z, β2, Di, b2 were chosen as the input layer parameters, η and H were the output factors. Through the analysis of prediction results, the conclusion was got that, the accuracy of the BP ANN is good enough for performance prediction. And the BP ANN can be used for assisting design of centrifugal pumps with splitters, which can shorten research time and cost.


Author(s):  
Yan Gong ◽  
Cong Wang ◽  
Meng Lin ◽  
Zhiguang Gao ◽  
Xiaodong Zhang

The bowed-twisted-swept modeling technology of three-dimensional blade has been widely used in the gas impeller machinery and achieved good results. This paper introduces the two-dimensional flow theory and the bowed-twisted-swept modeling ideology into hydraulic turbine design. Simultaneously combined with the popular NSGA-II multi-objective optimization algorithm, a complete set of hydraulic turbine cascade design method was proposed. Taking the last-stage low aspect ratio hydraulic cascade of Ф175 type turbine as an example, the parametric model of this cascade was reconstructed by a high-precision automatic bridge coordinate measuring machine. The multi-objective optimization design of three-dimensional modeling of cascade was completed with the single-stage turbine output torque, efficiency and pressure drop as the objective targets. Finally the influence of the bowed-twisted-swept modeling technology on the hydraulic turbine performance was explored in detail by a professional rotating machinery CFD software. Numerical analysis shows that the twisted blade design achieves a 1.5 times increase in torque and 2 to 4 times increase in pressure diff at same working condition. Moreover, when bowing optimization design and sweeping optimization design are applied on the twisted blade individually, the output torque and the stage efficiency of the hydraulic turbine are respectively improved, and when both two methods are simultaneously applied on the twisted blade, it is beneficial to reduce the pressure drop loss. However, it is noticeable that when the bowed-swept modeling technology used in a straight blade using almost have no effect on the turbine performance.


Author(s):  
Zhi-Ying Zheng ◽  
Quan-Zhong Liu ◽  
Yong-Kang Deng ◽  
Biao Li

To improve the efficiency of a hydraulic torque converter with adjustable pump at low load and thus increase the operation scope of high efficiency, multi-objective optimization design is carried out for the blade angles by incorporating three-dimensional steady computational fluid dynamics numerical simulation, design of experiments, Kriging surrogate model and multi-objective genetic algorithm. The results show that the angle of blade trailing edge in first-stage stator is the main influencing factor of the efficiency of hydraulic torque converter with adjustable pump. All the peak efficiencies of hydraulic torque converter with adjustable pump at three openings of the pump are improved after optimization, and the increased extent increases with decreasing opening of the pump. The operation scope of high efficiency consequently increases from 2.46 to 2.67. Besides, the improvement for the efficiency of hydraulic torque converter with adjustable pump is achieved by increasing the efficiency of the pump. The increase of angle of blade trailing edge in first-stage stator and the decrease of angle of blade leading edge in second-stage turbine after optimization induce the positive angle of attack at the inlet of second-stage turbine, thus realizing the performance optimization of hydraulic torque converter with adjustable pump. This also explains the increased proportion of the torque of second-stage turbine at larger speed ratios after optimization and the fact that the angle of blade trailing edge in first-stage stator is the main influencing factor of the efficiency of hydraulic torque converter with adjustable pump. The established multi-objective optimization method provides a reference solution for the optimization design of blade angles and for the improvement of integrated efficiency of hydraulic torque converter.


Author(s):  
Munther Y. Hermez ◽  
Badih A. Jawad ◽  
Liping Liu ◽  
Vernon Fernandez ◽  
Kingman Yee ◽  
...  

The present work aims to numerically study the inlet flow recirculation and modified impeller interaction in a centrifugal pump. An optimization of modified shrouded impeller with curved disk arrangement to suppress the unsteady flow recirculation is pursued. This modification will enhance the impeller characteristics with a wider operation range at both low and high flow rates in a high speed centrifugal pump type. The unstable flow in the centrifugal pumps is a common problem that leads to damage in the pump’s internal parts, consequently increases the operating cost. At certain flow rates, generally below the Best Efficiency Point (BEP), all centrifugal pumps are subject to internal recirculation occurs at the suction and discharge areas of the impeller. For decades, experimental work has been done to investigate the complex three-dimensional flow within centrifugal pumps impellers, before computational work gains momentum due to advancement of computing power and improved numerical codes. In this study the impeller with a curved disk arrangement has been investigated by using a three-dimensional Navier-Stokes code with a standard k-ε turbulence model. The purpose is to evaluate and select the optimum impeller modification that would increase the pump suction flow rate range. Three-dimensional numerical Computational Fluid Dynamics (CFD) tools are used to simulate flow field characteristics inside the centrifugal pump and provide critical hydraulic design information. In the present work, ANSYS v.16.1 Fluent solver is used to analyze the pressure and velocity distributions inside impeller suction and discharge passages. The ultimate goal of this study is to manufacture and validate the most optimized and efficient centrifugal pump impeller with a curved disk. The best case curve identifies the highest increase of total pressure difference by 22.1%, and highest efficiency by 92.3% at low flowrates.


Author(s):  
Jianping Yuan ◽  
Rong Jin ◽  
Shujuan Li ◽  
Longyan Wang ◽  
Aixiang Ge

In order to research the influence laws of the main geometrical parameters of auxiliary impeller and different operation conditions on the centrifugal pump with an auxiliary impeller, which aimed to act as dynamic seal, the orthogonal experiment was designed with four factors and three values. The factors respectively are auxiliary impeller axial clearance, blade width, outlet diameter and blade number. With simulation by Fluent, major and minor factors were investigated which influence the performance of the centrifugal pump with an auxiliary impeller. The cases with optimization sealing pressure value and optimization efficiency were obtained and it was proved by the experimental results. Then, two optimization cases and the original case were simulated and analyzed. The research results show that the major factor of auxiliary impellers for the pump efficiency is the outlet diameter. For sealing pressure head of auxiliary impellers, the major factor is the outlet diameter of auxiliary impeller and the axial clearance and blade number of the auxiliary impeller are secondary important factors. For the optimization of centrifugal pumps with an auxiliary impeller, numerical orthogonal tests can replace actual orthogonal tests.


2011 ◽  
Vol 317-319 ◽  
pp. 2373-2377
Author(s):  
Guo Juan Shang ◽  
Gen Li Shan ◽  
Xi Juan Qi

Based on sufficient market research, a new model of self-unloading semi-trailer, whose maximum loading capacity is 30 tons, has been designed. The paper describes its overall structure, the three-dimensional diorama model and the finite element model of the frame. Based on the analysis of the models and the results of the calculation, the parameters of the frame are optimized. The advantages of the new design are as follows: the new design makes the most of the advantages of self-unloading trailers and semi-trailers, that is, self-unloading, security, stability, high efficiency, environmental protection.


Author(s):  
M DaqiqShirazi ◽  
R Torabi ◽  
A Riasi ◽  
SA Nourbakhsh

In this paper, the flow in the impeller sidewall gap of a low specific speed centrifugal pump is analyzed to study the effect of wear ring clearance and the resultant through-flow on flow field in this cavity and investigate the overall efficiency of the pump. Centrifugal pumps are commonly subject to a reduction in the flow rate and volumetric efficiency due to abrasive liquids or working conditions, since the wear rings are progressively worn, the internal leakage flow is increased. In the new operating point, the overall efficiency of the pump cannot be predicted simply by using the pump characteristic curves. The flow field is simulated with the use of computational fluid dynamics and the three-dimensional full Navier–Stokes equations are solved using CFX software. In order to verify the numerical simulations, static pressure field in volute casing and pump performance curves are compared with the experimental measurements. The results show that, for the pump with minimum wear ring clearance, the disk friction efficiency is the strongest factor that impairs the overall efficiency. Therefore, when the ring clearance is enlarged more than three times, although volumetric efficiency decreases effectively but the reduction in overall efficiency is remarkably smaller due to improvement in the disk friction losses.


Sign in / Sign up

Export Citation Format

Share Document