Vibration Analysis for Elastic Vascular Stent

2010 ◽  
Vol 29-32 ◽  
pp. 1464-1469
Author(s):  
Sheng Mei Ma ◽  
Xin Chun Shang

A mathematical modeling for breathing vibration problem of vascular stent is presented. The vascular stent is considered in structure as an elastic cylindrical lattice shell, in which the cell element is treated as a spatial frame structure. Based on the force equilibrium and the deformation geometry analysis for the cell element, calculative formulae for effective elastic parameters of the lattice shell are obtained by using homogenization method. Hence, the vascular stent is modeled as an orthogonally anisotropic thin shell. The equation of vibration for vascular stent is derived from Flügge shell theory. The computation of natural frequency of vibration is performed. The analytic results from the presented formulae are close to that from finite element method by the means of ANSYS, which validates the applicability of the presented modeling of vascular stent structures. The vibration analysis could be a useful reference for practical engineering designs of vascular stent.

2017 ◽  
Vol 43 (1) ◽  
pp. 2-8
Author(s):  
Kazuyuki KOBAYASHI ◽  
Takao KOYAMA ◽  
Asumi SUGIMURA ◽  
Masahiro ARAI ◽  
Yoshinobu SHIMAMURA

2008 ◽  
Vol 400-402 ◽  
pp. 593-598
Author(s):  
Wei Xing Shi ◽  
Cheng Qing Liu ◽  
Xi Lin Lu ◽  
Song Zhang ◽  
Ying Zhou

A shaking table model test is conducted for Guangzhou West Tower to study its seismic behavior in State Key Laboratory for Disaster Reduction in Civil Engineering at Tongji University. Guangzhou West Tower adopts a new structure system and the significant characteristic of this system is the non-perpendicular frame arranged around the building, acting both as columns and bracings. Based on the similarity theory and member equivalent principle,a 1/80 scale model of this building is made of polymethyl methacrylate(PMMA). The model’s dynamic characteristics, earthquake-resistant behavior, responses of acceleration and deformation under different wave peak values are investigated, then the seismic responses of the prototype structure are deduced and analyzed. The whiplash effect of the prototype structure is studied, and the weak position of the structure is found out. The experiment results demonstrate that it is feasible to apply this structural type to practical engineering. Finally, some suggestions for the engineering design of the prototype structure are put forward.


2021 ◽  
Vol 8 ◽  
Author(s):  
Dehui Ye ◽  
Jie Tan ◽  
Yabin Liang ◽  
Qian Feng

The pounding tuned mass damper (PTMD) is a novel passive damper that absorbs and dissipates energy by an auxiliary tuned spring-mass system. Viscoelastic materials are attached to the interface of the limitation collar in the PTMD so that the energy dissipation capacity can be enhanced. Previous studies have successfully demonstrated the effectiveness of PTMD at room temperature. However, in practice, the PTMD may face a broad temperature range, which can affect the mechanical properties of the viscoelastic materials. Thus, the study of vibration control effectiveness of PTMD at different temperatures is of great significance for its practical engineering application. In this paper, a series of experiments were conducted to investigate the performance of a PTMD in a temperature-controlled environment. A PTMD device was designed to suppress the vibration of a portal frame structure and tested across environmental temperatures ranging from –20°C to 45°C. The displacement reduction ratios demonstrated the temperature robustness of the PTMD. Additionally, the numerical results validated the accuracy of the pounding force model and the performance of PTMD.


2020 ◽  
Vol 2020 ◽  
pp. 1-6 ◽  
Author(s):  
Guangfu Chen ◽  
Liangchao Zou ◽  
Qing Wang ◽  
Guodong Zhang

Anti-slide pile is one of the most frequently used measures in landslide control globally. Pile-spacing has always been determined by the load capacity of single piles or according to engineering empirical experience. Many engineering practices and laboratory experiments show that the soil arching effect exists in landslide control with anti-slide piles. In this study, we aim to calculate pile-spacing in terms of the soil arching effect. We investigated the pile-soil interaction mechanism and propose that, at the limit, the pile-back soil arch resists landslide thrust only. According to Mohr–Coulomb strength theory and limit equilibrium theories, we derived a new pile-spacing calculation equation. We verified the derived pile-spacing calculation equation with real projects. The calculated results are similar to those of practical engineering designs, in which the difference is within 10%. The equation can be used in anti-slide pile preliminary design. This study can be a reference for pile-spacing calculation based on the soil arching effect.


2020 ◽  
Vol 103 (3) ◽  
pp. 003685042093128 ◽  
Author(s):  
Linjun Wang ◽  
Yang Huang ◽  
Youxiang Xie ◽  
Yixian Du

Dynamic forces are very important boundary conditions in practical engineering applications, such as structural strength analysis, health monitoring and fault diagnosis, and vibration isolation. Moreover, there are many applications in which we have found it very difficult to directly obtain the expected dynamic load which acts on a structure. Some traditional indirect inverse analysis techniques are developed for load identification by measured responses. These inverse problems about load identification mentioned above are complex and inherently ill-posed, while regularization methods can deal with this kind of problem. However, most of regularization methods are only limited to solve the pure mathematical numerical examples without application to practical engineering problems, and they should be improved to exclude jamming of noises in engineering. In order to solve these problems, a new regularization method is presented in this article to investigate the minimum of this minimization problem, and applied to reconstructing multi-source dynamic loads on the frame structure of hydrogenerator by its steady-state responses. Numerical simulations of the inverse analysis show that the proposed method is more effective and accurate than the famous Tikhonov regularization method. The proposed regularization method in this article is powerful in solving the dyanmic load identification problems.


Electronics ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 757
Author(s):  
Teen-Hang Meen ◽  
Wenbing Zhao

Electronic Engineering and Design Innovations are both academic and practical engineering fields that involve systematic technological materialization through scientific principles and engineering designs [...]


2014 ◽  
Vol 919-921 ◽  
pp. 1027-1030
Author(s):  
Li Ming Li ◽  
Cheng Wei Huang ◽  
Cheng Shen ◽  
Yi Tian

The main purpose of optimum installation of the viscoelastic damper is to make the structure has a better seismic capacity.So we need find a reasonable objective function and a method to solve this function.This paper put forward a kind of optimization method based on the performance objective,explore suitability and feasibility of this method on the steel frame structure,and analyse the results compare with other optimization methods.The analytical method and the results has certain guiding significance for optimization of the viscoelastic damper in practical engineering.


Sign in / Sign up

Export Citation Format

Share Document