Handling Stability Performance Simulation and Analysis of Three Different Vehicle Models

2010 ◽  
Vol 29-32 ◽  
pp. 750-755
Author(s):  
Shu Feng Wang ◽  
Hua Shi Li ◽  
Cui Hua He

In order to obtain accurate vehicle handling stability performance, 2 DOF nonlinear vehicle model and multi-body dynamics vehicle model are established. Selecting the same vehicle parameters, step steering angle input simulations of three vehicle model (include 2DOF linear vehicle model) are carried out under the same driving conditions, simulation results are analyzed and compared. The simulation results show that 2DOF linear model can characterize the steering states of vehicle when vehicle lateral acceleration is small, but when vehicle lateral acceleration is big, Nonlinear vehicle model and multi-body dynamics model is accurate.

2014 ◽  
Vol 1006-1007 ◽  
pp. 294-297 ◽  
Author(s):  
Zhi Ming Yan ◽  
Jian Jun Cai ◽  
Su Qin Qu ◽  
Fang Fang Zhai ◽  
An Rong Sun ◽  
...  

In this paper, a multi-body dynamics model of amphibious vehicle is established in terms of dynamic simulative software ADAMS/Car. The front and rear suspension system are studied and analyzed respectively. The handling stability performance of front suspension is simulated under step steering input, pulse steering input, steady turning, and meandered test in related to specifications. According to the simulation results, the handling stability of amphibious vehicle is evaluated objectively.


2012 ◽  
Vol 472-475 ◽  
pp. 2152-2155
Author(s):  
Jie Meng ◽  
Kai Zhang ◽  
Bao Cheng Yang

A vehicle model is built using the multi body dynamics software-ADAMS/ Car first. And then the vehicle’s performance of the constant radius cornering and ISO lane change is simulated. According to the simulation results, the handling stability is evaluated. The result shows that the ADAMS software can provide accurate simulation test and optimize the design plan of vehicle product.


2014 ◽  
Vol 988 ◽  
pp. 582-585
Author(s):  
Yu Zhan Cai ◽  
Jian Hua Wang ◽  
Wen Long Dong ◽  
Zuo Fei Liu

A nonlinear four-wheel dynamics vehicle model which includes a limit-slip differential model based on FSAE racecar is established and the typical conditions are designed according to track requirement. The effect of different locking ratio on vehicle handling stability has been researched .The simulation results shows that: with the increase of locking ratio, the steering radius ratio increase, both peak lateral acceleration and yaw angular velocity reduce, and the changing trend of value is flat. But the average acceleration increase with the locking ratio until the latter reach a specific value under the condition of Slaloms.


2010 ◽  
Vol 139-141 ◽  
pp. 2643-2647 ◽  
Author(s):  
Dong Mei Yuan ◽  
Xiao Mei Zheng ◽  
Ying Yang

Through analyzing the motion when motorcycle runs on the bump road, the 5-DOF multi-body dynamics model of motorcycle is developed, the degrees of freedom include vertical displacement of sprung mass, rotation of sprung mass, vertical displacement of driver, and vertical displacement of front and rear suspension under sprung mass. According to Lagrange Equation, the differential equations of motion and state-space formulation are derived. Then bump road is simulated by triangle bump, and input displacement is programmed by MATLAB. With the input of bump road, motorcycle ride comfort is simulated, and the simulation results are verified by experiment results combined with two channels tire-coupling road simulator. It indicates that the simulation results and experiment results match well; the 5-DOF model has guidance for development of motorcycle ride comfort.


2013 ◽  
Vol 774-776 ◽  
pp. 195-198 ◽  
Author(s):  
Huai Feng Yang ◽  
Xiao Rong Lv

A multi-body dynamics model and ground model of a small crawler chassis was built on software RecurDyn/Track (LM). The simulations of the small crawler chassis turning on hard and soft terrain are implemented respectively, and the results are analyzed and compared. The steering properties of crawler chassis turning on soft terrain are emphasized. The simulation results can provide some theoretical guidance for crawler chassis steering performance.


Author(s):  
Joshua T. Cook ◽  
Laura Ray ◽  
James Lever

This paper presents a generalized, multi-body dynamics model for a tracked vehicle equipped with a winch for towing operations. The modeling approach couples existing formulations in the literature for the powertrain components and the vehicle-terrain interaction to provide a comprehensive model that captures the salient features of terrain trafficability. This coupling is essential for making realistic predictions of the vehicle’s mobility capabilities due to the power-load relationship at the engine output. Simulation results are presented jointly with experimental data to validate these dynamics under conditions where no action is taken by the winch. Extended modeling includes dynamics of the hydraulic system that powers the winch so that the limitation of the winch as an actuator and the load it puts on the engine are realized. A second set of simulation results show that for a set of open loop control actions by the winch, the vehicle is able to maintain its mobility in low traction terrain by paying the towed load in and out.


2000 ◽  
Vol 123 (2) ◽  
pp. 179-185 ◽  
Author(s):  
Kunsoo Huh ◽  
Daegun Hong

In this paper, track tension monitoring methodology is developed so that the track tension can be estimated under various maneuvering tasks such as longitudinal driving on sloping and/or rough roads, turning on flat or sloping roads, etc. The real-time information of the track tension is very important for tracked vehicles because the track tension is closely related to the maneuverability and the durability of tracked vehicles. In the case of longitudinal driving, a modified 3 DOF dynamics model is derived for tracked vehicles and is utilized for estimating the tractive force and track tension. In the case of turning, kinetic models for six road-wheels are obtained and used for calculating the track tension around the sprocket. This method does not require tuning of the turning resistance, which makes it difficult to estimate the track tension in turning. The estimation performance of the proposed methods is verified through simulations of the Multi-Body Dynamics tool. The simulation results demonstrate the effectiveness of the proposed method under various maneuvering tasks of tracked vehicles.


Author(s):  
F Chang ◽  
Z-H Lu

It is worthwhile to design a more accurate dynamic model for air springs, to investigate the dynamic behaviour of an air spring suspension, and to analyse and guide the design of vehicles with air spring suspensions. In this study, a dynamic model of air spring was established, considering the heat transfer process of the air springs. Two different types of air spring were tested, and the experimental results verified the effectiveness of the air spring model compared with the traditional model. The key factors affecting the computation accuracy were studied and checked by comparing the results of the experiments and simulations. The new dynamic model of the air spring was integrated into the full-vehicle multi-body dynamics model, in order to investigate the air suspension behaviour and vehicle dynamics characteristics. The co-simulation method using ADAMS and MATLAB/Simulink was applied to integration of the air spring model with the full-vehicle multi-body dynamics model.


Author(s):  
S. C¸ag˘lar Bas¸lamıs¸lı ◽  
Selim Solmaz

In this paper, a control oriented rational tire model is developed and incorporated in a two-track vehicle dynamics model for the prospective design of vehicle dynamics controllers. The tire model proposed in this paper is an enhancement over previous rational models which have taken into account only the peaking and saturation behavior disregarding all other force generation characteristics. Simulation results have been conducted to compare the dynamics of a vehicle model equipped with a Magic Formula tire model, a rational tire model available in the literature and the present rational tire model. It has been observed that the proposed tire model results in vehicle responses that closely follow those obtained with the Magic Formula even for extreme driving scenarios conducted on roads with low adhesion coefficient.


2014 ◽  
Vol 889-890 ◽  
pp. 958-961
Author(s):  
Huan Ming Chen

It is very important to simulate driver's manipulation for people - car - road closed loop simulation system. In this paper, the driver model is divided into two parts, linear vehicle model is used to simulate the driver's driving experience, and closed-loop feedback is used to characterize the driver's emergency feedback. The lateral acceleration of vehicle is used as feedback in closed loop control. Simulation results show that the smaller lateral acceleration requires the less closed-loop feedback control. The driver model can accurately track the target path, which can be used to simulate the manipulation of the driver. The driver model can be used for people - car - road closed loop simulation to evaluate vehicle handling stability.


Sign in / Sign up

Export Citation Format

Share Document