Reliability Modeling of Wind Farm Considering the Outages of Connection Cables

2013 ◽  
Vol 291-294 ◽  
pp. 461-466
Author(s):  
Guo Bing Qiu ◽  
Wen Xia Liu ◽  
Jian Hua Zhang

Considering the randomness of wind speed and wind direction, the partial wake effect between wind turbines (WTs) in complex terrain was analyzed and a multiple wake model in complex terrain was established. Taking the power output characteristic of WT into consideration, a wind farm reliability model which considered the outages of connection cables was presented. The model is implemented in MATLAB using sequential Monte Carlo simulation and the results show that this model corrects the power output of wind farm, while improving the accuracy of wind farm reliability model.

2018 ◽  
Vol 8 (12) ◽  
pp. 2660 ◽  
Author(s):  
Longyan Wang ◽  
Yunkai Zhou ◽  
Jian Xu

Optimal design of wind turbine placement in a wind farm is one of the most effective tools to reduce wake power losses by alleviating the wake effect in the wind farm. In comparison to the discrete grid-based wind farm design method, the continuous coordinate method has the property of continuously varying the placement of wind turbines, and hence, is far more capable of obtaining the global optimum solutions. In this paper, the coordinate method was applied to optimize the layout of a real offshore wind farm for both simplified and realistic wind conditions. A new analytical wake model (Jensen-Gaussian model) taking into account the wake velocity variation in the radial direction was employed for the optimization study. The means of handling the irregular real wind farm boundary were proposed to guarantee that the optimized wind turbine positions are feasible within the wind farm boundary, and the discretization method was applied for the evaluation of wind farm power output under Weibull distribution. By investigating the wind farm layout optimization under different wind conditions, it showed that the total wind farm power output increased linearly with an increasing number of wind turbines. Under some particular wind conditions (e.g., constant wind speed and wind direction, and Weibull distribution), almost the same power losses were obtained under the wake effect of some adjacent wind turbine numbers. A common feature of the wind turbine placements regardless of the wind conditions was that they were distributed along the wind farm boundary as much as possible in order to alleviate the wake effect.


2013 ◽  
Vol 291-294 ◽  
pp. 536-540 ◽  
Author(s):  
Xin Wei Wang ◽  
Jian Hua Zhang ◽  
Cheng Jiang ◽  
Lei Yu

The conventional deterministic methods have been unable to accurately assess the active power output of the wind farm being the random and intermittent of wind power, and the probabilistic methods commonly used to solve this problem. In this paper the multi-state fault model is built considering run, outage and derating state of wind turbine, and then the reliability model of the wind farm is established considering the randomness of the wind speed, the wind farm wake effects and turbine failure. The active wind farm output probability assessment methods and processes based on the Monte Carlo method. The related programs are written in MATLAB, and the probability assessment for active power output of a wind farm in carried out, the effectiveness and adaptability of built reliability models and assessment methods are illustrated by analysis of the effects of reliability parameters and model parameters on assessment results.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4291
Author(s):  
Paxis Marques João Roque ◽  
Shyama Pada Chowdhury ◽  
Zhongjie Huan

District of Namaacha in Maputo Province of Mozambique presents a high wind potential, with an average wind speed of around 7.5 m/s and huge open fields that are favourable to the installation of wind farms. However, in order to make better use of the wind potential, it is necessary to evaluate the operating conditions of the turbines and guide the independent power producers (IPPs) on how to efficiently use wind power. The investigation of the wind farm operating conditions is justified by the fact that the implementation of wind power systems is quite expensive, and therefore, it is imperative to find alternatives to reduce power losses and improve energy production. Taking into account the power needs in Mozambique, this project applied hybrid optimisation of multiple energy resources (HOMER) to size the capacity of the wind farm and the number of turbines that guarantee an adequate supply of power. Moreover, considering the topographic conditions of the site and the operational parameters of the turbines, the system advisor model (SAM) was applied to evaluate the performance of the Vestas V82-1.65 horizontal axis turbines and the system’s power output as a result of the wake effect. For any wind farm, it is evident that wind turbines’ wake effects significantly reduce the performance of wind farms. The paper seeks to design and examine the proper layout for practical placements of wind generators. Firstly, a survey on the Namaacha’s electricity demand was carried out in order to obtain the district’s daily load profile required to size the wind farm’s capacity. Secondly, with the previous knowledge that the operation of wind farms is affected by wake losses, different wake effect models applied by SAM were examined and the Eddy–Viscosity model was selected to perform the analysis. Three distinct layouts result from SAM optimisation, and the best one is recommended for wind turbines installation for maximising wind to energy generation. Although it is understood that the wake effect occurs on any wind farm, it is observed that wake losses can be minimised through the proper design of the wind generators’ placement layout. Therefore, any wind farm project should, from its layout, examine the optimal wind farm arrangement, which will depend on the wind speed, wind direction, turbine hub height, and other topographical characteristics of the area. In that context, considering the topographic and climate features of Mozambique, the study brings novelty in the way wind farms should be placed in the district and wake losses minimised. The study is based on a real assumption that the project can be implemented in the district, and thus, considering the wind farm’s capacity, the district’s energy needs could be met. The optimal transversal and longitudinal distances between turbines recommended are 8Do and 10Do, respectively, arranged according to layout 1, with wake losses of about 1.7%, land utilisation of about 6.46 Km2, and power output estimated at 71.844 GWh per year.


Algorithms ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 325
Author(s):  
Emad Mohamed ◽  
Parinaz Jafari ◽  
Simaan AbouRizk

Currently, input modeling for Monte Carlo simulation (MSC) is performed either by fitting a probability distribution to historical data or using expert elicitation methods when historical data are limited. These approaches, however, are not suitable for wind farm construction, where—although lacking in historical data—large amounts of subjective knowledge describing the impacts of risk factors are available. Existing approaches are also limited by their inability to consider a risk factor’s impact on cost and schedule as dependent. This paper is proposing a methodology to enhance input modeling in Monte Carlo risk assessment of wind farm projects based on fuzzy set theory and multivariate modeling. In the proposed method, subjective expert knowledge is quantified using fuzzy logic and is used to determine the parameters of a marginal generalized Beta distribution. Then, the correlation between the cost and schedule impact is determined and fit jointly into a bivariate distribution using copulas. To evaluate the feasibility of the proposed methodology and to demonstrate its main features, the method was applied to an illustrative case study, and sensitivity analysis and face validation were used to evaluate the method. The results demonstrated that the proposed approach provides a reliable method for enhancing input modeling in Monte Carlo simulation (MCS).


Fluids ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 153 ◽  
Author(s):  
Omar M. A. M. Ibrahim ◽  
Shigeo Yoshida ◽  
Masahiro Hamasaki ◽  
Ao Takada

Complex terrain can influence wind turbine wakes and wind speed profiles in a wind farm. Consequently, predicting the performance of wind turbines and energy production over complex terrain is more difficult than it is over flat terrain. In this preliminary study, an engineering wake model, that considers acceleration on a two-dimensional hill, was developed based on the momentum theory. The model consists of the wake width and wake wind speed. The equation to calculate the rotor thrust, which is calculated by the wake wind speed profiles, was also formulated. Then, a wind-tunnel test was performed in simple flow conditions in order to investigate wake development over a two-dimensional hill. After this the wake model was compared with the wind-tunnel test, and the results obtained by using the new wake model were close to the wind-tunnel test results. Using the new wake model, it was possible to estimate the wake shrinkage in an accelerating two-dimensional wind field.


Sign in / Sign up

Export Citation Format

Share Document