Study on Surface Subsidence Law Induced by Deep Mining of Large Steep Metal Deposit

2013 ◽  
Vol 295-298 ◽  
pp. 2902-2905
Author(s):  
Yan Hui Guo ◽  
Ke Peng Hou

To solve this difficult technological problem that predicts the surface subsidence that induced by deep mining of large steep deposit. Through understanding engineering geological characteristics and mining conditions for a certain mining area, the three-dimensional simulation model of deep mining with a high degree similarity in space and mechanics morphology have been established, and the exploitation of the mining area has been systematically simulated. After excavation of the third stage, the calculated values of surface subsidence coincided with the measured values of GPS. Then it has been more accurately predicted surface subsidence and displacement angle and the range of surface deformation which were induced by deep mining in fourth stage project. It provides the basis for the positioning of underground engineering and design of the range of ground movement in deep mining.

2021 ◽  
Vol 303 ◽  
pp. 01040
Author(s):  
Fan Feng ◽  
Xibing Li ◽  
Shaojie Chen ◽  
Dingxiao Peng ◽  
Zhuang Bian

For mining using the caving and filling methods in metal mines, determining a suitable size for the isolated pillars—the connecting part of the extension from shallow to deep—is crucial for ensuring safety and efficiency. Considering actual cases involving deep caving and cut-and-fill mining in the Chifeng Hongling lead-zinc mine in Inner Mongolia, China, the reserved thickness range of the horizontal isolation layer is obtained via theoretical analysis. On this basis, the pre-processing software HyperMesh is used to build a high-precision hexahedral grid model of the mining area, and the three-dimensional geological model of the mining area is imported into the finite-difference software FLAC3D. The stress field, displacement field, and plastic area evolution law of pillars (horizontally isolated pillars and adjacent rib pillars) in the stope of the ninth middle section after excavation are analyzed via numerical simulation inversion of the selected scheme of horizontal isolated pillars. The numerical simulation results show that the scheme employed to retain the upper horizontal isolated pillars in the ninth middle section involves reserving thicknesses of 8 m and 32 m at average ore body thicknesses of 15 m and 35 m, respectively. These results can provide theoretical guidance and a basis for safe and efficient mining of deep metal mines.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jiaqi Jin ◽  
Chicheng Yan ◽  
Yixuan Tang ◽  
Yilong Yin

Along with the accelerated shift of coal mining to the ecologically fragile west, the contradiction between coal resource development and ecological protection in the western arid and semiarid coal mining areas is rapidly intensifying. Based on the above background, this thesis takes the coal mining area in the arid and semiarid regions as an example; applies the theories of ecology, coal mining subsidence, geodesy, and ecological restoration; uses remote sensing in synthetic aperture radar (SAR), geographic information system (GIS), and mathematical modelling to reveal the ecological evolution law of the mining area; measures the ecological damage of the mining area; and then proposes a reasonable ecological restoration strategy. The surface deformation monitoring study in the study area shows that on the whole, some areas in the study area have different degrees of surface subsidence disasters, and the maximum surface subsidence value exceeds 800 mm. From the distribution of surface subsidence in the study area, surface subsidence disasters mainly occur in the eastern and central mountainous areas rich in coal resources, as well as in the mining areas west of the Yellow River, and the subsidence basins are distributed in a series of irregular concentric ovals. In terms of the scale of surface subsidence in the study area, a total of 230.03 km2 of land in the study area showed surface subsidence hazards during the monitoring period, accounting for 13.78% of the total area of the study area, of which the area of severe subsidence was 44.98 km2 (2.69%). The area of more serious subsidence area is 101.33 km2 (6.07%), and the area affected by subsidence is 83.72 km2 (5.01%).


2011 ◽  
Vol 243-249 ◽  
pp. 5890-5893
Author(s):  
Gang Chen ◽  
Qiong Wang

After ore mined, the equilibrium state of original rock stress around mining area is damaged, causing surface deforming at large range. With the increasing resource needing and mining intensity, the mines all over the world are gradually in a stage of deep mining, so it is important to study the principle of surface deformation under the condition of deep mining. Finite element method is used to simulate mine process with increasing depth, and the relationship between mining depth and surface deformation is achieved. The result has important reference value to practical engineering.


2014 ◽  
Vol 670-671 ◽  
pp. 907-911
Author(s):  
Shu Xiang Wei ◽  
Yun Yong Wang ◽  
Chang Yu Jin ◽  
Long Bin Dong ◽  
Dong Liu

With the increase of mining depth, rock mechanics conditions become complicates. So the surface subsidence law caused by deep mining is different from the shallow. Based on the finite difference method and rock mechanics theory, the surface subsidence law cased by deep caving mining was studied, the strata movement rule and characteristics of stress distribution of different excavation stage was analyzed systematically. The results of the study can provide certain reference significance for the deep mining to confirm the displacement angle and range of surface subsidence.


2014 ◽  
Vol 989-994 ◽  
pp. 3070-3074
Author(s):  
Qing Wen Li ◽  
Lan Qiao ◽  
Lu Chen

Further excavation is extraordinary significant to the sustainable development of mine. For the rock slope, three-dimensional geostress in the deep mining area are presented complex and high, which were caused by previous excavation. Also, it is important to obtain the accurate geostress in mining area, which is the necessary precondition for determining the remaining ore mining scheme and the slope stability. In this paper, based on the in-situ geostress monitoring date, a 3D numerical model alongside the physical dimensions was built in finite element software FLAC3D, to accept the constitutive parameter and monitoring data, to predict the 3D stress and displacement distributions and detail failure information, to estimate stability of mining area.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Xianxiang Zhu ◽  
Wenquan Zhang ◽  
Zaiyong Wang ◽  
Chenghao Wang ◽  
Wei Li ◽  
...  

Based on the coal seam mining under the condition of thick soil layer, the mechanical mining subsidence process under the condition of thick soil layer was analyzed. Combined with the results of core drilling and laboratory test in the mining area, the mechanical analysis of the special transition strata of “hard soil-soft rock” at the bottom of the soil layer was carried out. Additionally, the characteristics of the shallow buried soil layer were compared and analyzed. Furthermore, the significance of this transitional font to the surface subsidence law was proposed. By using the numerical simulation software of FLAC3D and choosing the thickness of “hard soil-soft rock” transitional font as the influencing factor, a model was established and the surface subsidence characteristics of different stratum combinations were numerically simulated. The research results show that the transitional font is the special strata indicating that the hard soil is transiting to the soft rock, having a significant effect on the ground movement and deformation induced by coal mining. It cannot be designated into the loose strata. Also, it cannot be regarded as the bed rock to study the influence of it on the surface subsidence. The “hard soil-soft rock” transitional font has the support effect on the overlying strata during coal seam mining, which can restrict the surface subsidence. Furthermore, the larger the thickness of the transitional font is, the more obvious the restricting effect of it on the surface subsidence is. Meantime, this restricting effect will not be changed with the variation of the proportion between the loss bed and the bed rock thickness. Only the restricting extent is a little different.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Baiyi Li ◽  
Nan Zhou ◽  
Wenyue Qi ◽  
Ailing Li ◽  
Zhizhong Cui

Deep resource exploitation is imperative, but it is facing with more complicated mining environment and more dangerous mining disturbances to induce the potential catastrophe process. Solid backfill technology, which can control the strata movement and prevent potential hazards, has been used as the primary method in deep mining for surface subsidence control and ecosystem protection. In this study, taking backfill mining area no. 930 in the Tangkou coal mine as background, the probability integral model was adopted to predict the surface subsidence at different mining depths and filling ratios. The filling ratio was designed for deep mining based on the regression analysis of the predicted surface subsidence results. The study shows that the backfilling ratio at the Tangkou deep coal mining area should be controlled at a level greater than 82.5%, and the mining damage to the surface under this condition was analyzed. Furthermore, control strategies for deep backfill mining are proposed in which the backfill density can be enhanced by optimizing the tamping machine, material composition, and tamping process. Finally, the measurement of the backfill mass and surface subsidence showed that the actual filling ratio was controlled at 82.57%, which ensures adequate protection of the surface buildings during the mining process.


Author(s):  
Xiaolin Wang ◽  
Jian Shuai ◽  
Yuanxi Ye ◽  
Shangzhi Zuo

To investigate the effects of mining subsidence on buried pipeline, a computer program to predict three-dimensional ground movement is developed based on Probability Function Integration Method and pressurized pipeline subject to ground subsidence is modeled by using finite element method. Pipeline deformation, stress, strain and the influence of pipeline route are analyzed. The results show that bending combined with compression and twisting results in high stress and strain level for pipeline running athwart subsidence area, while for pipeline parallel to strike or oblique direction of mining gob, obvious twisting is not found and main deformation of pipeline is bending combined with tension which results in lower stress and strain than the former. It is recommended for pipeline design or route selection in mining area that pipeline should be laid parallel to the strike or oblique direction of mining gob in order to avoid complicated deformation.


2008 ◽  
Vol 128 (2) ◽  
pp. 459-466 ◽  
Author(s):  
Yoshitaka Inui ◽  
Tadashi Tanaka ◽  
Tomoyoshi Kanno

Sign in / Sign up

Export Citation Format

Share Document