Development of On-Line Monitoring System and Aging Characteristics Research of Switchgear

2013 ◽  
Vol 330 ◽  
pp. 364-367
Author(s):  
Shu Xin Liu ◽  
Yun Dong Cao ◽  
Chun Guang Hou ◽  
Yang Liu ◽  
Xiao Ming Liu

For improving reliable operation of switchgear in power system, an approach for on-line monitoring the insulation characteristic and bus-bar temperature rising of the switchgear is proposed in this paper. Through comparing several existing temperature measurement methods for monitoring temperature rising elevation at bus-bas, a new design of temperature monitoring method is proposed. It adopts quick-magnetic saturated current transformer, temperature sensor and infrared transmission to solve the problem of high voltage isolation. The epoxy resin insulation material which is commonly used in switchgear its aging mechanism data is not complete, seriously restrict on-line monitoring for switchgear, so thousands hours of aging experiment is done on switchgear, systematic study various electrical characteristics variation law on the gradual aging process of epoxy resin insulation materials. Therefore, study on the aging characteristics of switchgearinsulation and its lifetime estimation method is the key technology to understand agingmechanism better, search for new fault diagnostic method and the way to extend theuseful lifetime of switchgear. At last, the system runs in real system and the result shows the on-line monitoring system is stable and reliable which can be provide reference for on-line monitoring system design of switchgear.

Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1157
Author(s):  
Javier Camacho ◽  
Fernando Veiga ◽  
Mari Luz Penalva ◽  
Alberto Diez-Olivan ◽  
Lutz Deitert ◽  
...  

Blind fasteners are of special interest for aircraft construction since they allow working on joints where only one side is accessible, as is the case in many common aerospace box-type structures, such as stabilizers and flaps. This paper aims to deliver an online monitoring method for the detection of incorrect installed blind fasteners. In this type of fastener, the back side of the assembly is not accessible, so monitoring the process installation is suitable as a system to assess the formed head at the back side with no access. The solution proposed consists of an on-line monitoring system that is based on sensor signals acquired during the installation. The signals are conveniently analyzed in order to provide an evaluation outcome on how the fastener was installed. This new method will help production to decrease/eliminate time and cost-intensive inspections and fasteners over installation in structures. The decrease of the number of installed fasteners will also contribute to weight savings and will reduce the use of resources.


2013 ◽  
Vol 373-375 ◽  
pp. 986-991
Author(s):  
Yan Qing Li ◽  
Zi Hang Jia ◽  
Liang Zhao ◽  
Jian Feng Liang

This paper introduces an on-line monitoring system for partial discharge of 10kV cable joint based on LabVIEW. It calculates transfer characteristic of wideband current transformer for monitoring partial discharge current after analyzing the mechanism of production of partial discharge. The proposed current transformer can restrain the noise signal efficiently in electromagnetic induction part. Since the on-line monitoring system was installed in transformer substation, the LabVIEW monitoring platform can keep a lookout over partial discharge current of cable joint constantly. It can monitor the cable joint accurately.


2014 ◽  
Vol 670-671 ◽  
pp. 1238-1241
Author(s):  
Ping Xu ◽  
Jian Gang Yi ◽  
Li Zhao

Large rotating machinery is widely used in industrial production process. With the computer network technology, system testing technology, signal analysis and fault diagnosis technology, large motor based on high speed wire rod production line as the object, the online monitoring method of large motor is present. Based on it, the signal processing approach of large motor under complex circumstance is proposed, and the software of on-line monitoring system for large motor is developed. Through monitoring the key parameters of the distributed signals of temperature, pressure, current and so on, the developed system can accurately analyze and locate critical faults of equipments, reduce faults rate, extend the service life and increase productivity of the motor equipment.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2562
Author(s):  
Abdullahi Abubakar Mas’ud ◽  
Arunachalam Sundaram ◽  
Jorge Alfredo Ardila-Rey ◽  
Roger Schurch ◽  
Firdaus Muhammad-Sukki ◽  
...  

In high-voltage (HV) insulation, electrical trees are an important degradation phenomenon strongly linked to partial discharge (PD) activity. Their initiation and development have attracted the attention of the research community and better understanding and characterization of the phenomenon are needed. They are very damaging and develop through the insulation material forming a discharge conduction path. Therefore, it is important to adequately measure and characterize tree growth before it can lead to complete failure of the system. In this paper, the Gaussian mixture model (GMM) has been applied to cluster and classify the different growth stages of electrical trees in epoxy resin insulation. First, tree growth experiments were conducted, and PD data captured from the initial to breakdown stage of the tree growth in epoxy resin insulation. Second, the GMM was applied to categorize the different electrical tree stages into clusters. The results show that PD dynamics vary with different stress voltages and tree growth stages. The electrical tree patterns with shorter breakdown times had identical clusters throughout the degradation stages. The breakdown time can be a key factor in determining the degradation levels of PD patterns emanating from trees in epoxy resin. This is important in order to determine the severity of electrical treeing degradation, and, therefore, to perform efficient asset management. The novelty of the work presented in this paper is that for the first time the GMM has been applied for electrical tree growth classification and the optimal values for the hyperparameters, i.e., the number of clusters and the appropriate covariance structure, have been determined for the different electrical tree clusters.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Yunjeong Yang ◽  
Ji Eun Kim ◽  
Hak Jin Song ◽  
Eun Bin Lee ◽  
Yong-Keun Choi ◽  
...  

Abstract Background Water content variation during plant growth is one of the most important monitoring parameters in plant studies. Conventional parameters (such as dry weight) are unreliable; thus, the development of rapid, accurate methods that will allow the monitoring of water content variation in live plants is necessary. In this study, we aimed to develop a non-invasive, radiofrequency-based monitoring system to rapidly and accurately detect water content variation in live plants. The changes in standing wave ratio (SWR) caused by the presence of stem water and magnetic particles in the stem water flow were used as the basis of plant monitoring systems. Results The SWR of a coil probe was used to develop a non-invasive monitoring system to detect water content variation in live plants. When water was added to the live experimental plants with or without illumination under drought conditions, noticeable SWR changes at various frequencies were observed. When a fixed frequency (1.611 GHz) was applied to a single experimental plant (Radermachera sinica), a more comprehensive monitoring, such as water content variation within the plant and the effect of illumination on water content, was achieved. Conclusions Our study demonstrated that the SWR of a coil probe could be used as a real-time, non-invasive, non-destructive parameter for detecting water content variation and practical vital activity in live plants. Our non-invasive monitoring method based on SWR may also be applied to various plant studies.


2011 ◽  
Vol 422 ◽  
pp. 296-299
Author(s):  
Shi Long Wang ◽  
Li Na Wang ◽  
Hong Bo Wang ◽  
Yong Hui Cai

In order to achieve the target of controlling SO2 emissions in fumes in a short period of time in China, a SO2 on-line monitoring system (CEMS) has been developed by the authorased on the principle of electrochemistry. This system consists of two subsystems: (1) SO2 mass concentration monitoring and (2) SO2 flow velocity and flow rate monitoring. In the paper, the procedure of system and working principle and method of SO2 mass concentration monitoring subsystem are described in detail (SO2 flow velocity and flow rate monitoring subsystem is described by another paper).Two subsystems work synchronously to monitor and calculate the SO2 emissions, then the on-line monitoring of SO2 emissions is achieved. Through experiment and testing, monitoring result of the system is stable and reliable, which has reached the national monitoring standards and passed the appraisal.


Sign in / Sign up

Export Citation Format

Share Document