Structural Health Monitoring Cloud and its Applications for Large-Scale Infrastructures

2013 ◽  
Vol 330 ◽  
pp. 418-425
Author(s):  
Cheng Ming Lan ◽  
Wen Feng Liu

The concept and framework about Structural Health Monitoring Cloud (SHMC) for data management, data storage, safety warning and structural safety assessment are established in this paper based on the fusions of cloud computing, internet of things (IOT), and structural health monitoring (SHM). SHM plays a significant role in modern infrastructure because it provides a means to assess structural integrity online, eliminate manual inspections and may result in a transition from time-to condition-based maintenance. Also, there are many difficulties to deal with the huge amounts data for the owner of infrastructure. So the new ideas of SHMC which is provided and realized by the third part professional organization are proposed in this paper. Based on the summary of the technical characteristic of internet of things for structural health monitoring, the system requirements, architecture, and advantages of SHMC are described, and then the statues of related technology research were reviewed. The data mining and damage detection programs are embedded in SHMC platform and all collected data from acquisition system would be processed and then be used to assess the safety of infrastructures. Finally, actual applications of SHMC for large-scale infrastructures are illustrated.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Wang Ziping ◽  
Xiong Xiqiang ◽  
Qian Lei ◽  
Wang Jiatao ◽  
Fei Yue ◽  
...  

In the application of Structural Health Monitoring (SHM) methods and related technologies, the transducer used for electroacoustic conversion has gradually become a key component of SHM systems because of its unique function of transmitting structural safety information. By comparing and analyzing the health and safety of large-scale structures, the related theories and methods of Structural Health Monitoring (SHM) based on ultrasonic guided waves are studied. The key technologies and research status of the interdigital guided wave transducer arrays which used for structural damage detection are introduced. The application fields of interdigital transducers are summarized. The key technical and scientific problems solved by IDT for Structural Damage Monitoring (SHM) are presented. Finally, the development of IDT technology and this research project are summarised.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6843
Author(s):  
Hu Sun ◽  
Tao Wang ◽  
Dawei Lin ◽  
Yishou Wang ◽  
Xinlin Qing

Bolted joints are the primary structures for the load transfer of large-scale structures. It is vital to monitor the process of bolt cracking for enduring structural safety. In this paper, a structural health monitoring technique based on the embedding eddy current sensing film has been proposed to quantify the crack parameters of bolt cracking. Two configurations of the sensing film containing one-dimensional circumferential coil array and two-dimensional coil array are designed and verified to have the ability to identify three crack parameters: the crack angle, the crack depth, and the crack location in the axial direction of the bolt. The finite element method has been employed not only to verify the capacity of the sensing film, but also to investigate the interaction between the crack and the eddy current/magnetic field. It has been demonstrated that as the crack propagates, the variations of the induced voltage of the sensing coils are influenced by both eddy current effect and magnetic flux leakage, which play different roles in the different periods of the crack propagation. Experiments have been performed to verify the effectiveness and feasibility of the sensing film to quantify three crack parameters in the process of the bolt cracking.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yu Yan ◽  
Xingquan Mao ◽  
Xu Wang ◽  
Xianfeng Yu ◽  
Lei Fang

Even though large-scale projects, such as sea-crossing bridges and tunnels, have complex structures and service conditions, the structural health monitoring (SHM) system can comprehensively monitor the stress situation and damage evolution law in the entire construction and service process of such structures. Based on the background of the Hong Kong–Zhuhai–Macao Bridge, this study systematically introduces the overall goal and framework of the SHM system, monitoring content, and sensor information. Moreover, the structural health condition evaluation methods and data analysis methods are presented in detail. Then, on the basis of a multilayer data storage system, a fault-tolerant data center platform design, an open integrated supervision platform design, and other measures, a set of reliable and advanced large-scale software systems are built to achieve the SHM system for the Hong Kong–Zhuhai–Macao Bridge. Finally, the wind characteristics around the Hong Kong–Zhuhai–Macao Bridge and some of the monitored structural responses from the Super Typhoon Mangkhut in 2018 are shown, which verified that the SHM system can accurately and reliably monitor and feedback the environmental load and structural response of the principal parts of the Hong Kong–Zhuhai–Macao Bridge under complicated service environment.


2021 ◽  
Vol 11 (4) ◽  
pp. 1647
Author(s):  
Georgios Foteinidis ◽  
Alkiviadis S. Paipetis

We report the transformation of a conventional composite material into a multifunctional structure able to provide information about its structural integrity. A purposely positioned grid of carbon fabric strips located within a glass fibre laminate in alternating 0/90 configuration combined with a ternary nanomodified epoxy matrix imparted structural health monitoring (SHM) topographic capabilities to the composite using the impedance spectroscopy (IS) technique. The matrix was reinforced with homogenously dispersed multi-walled carbon nanotubes (MWCNTs) and carbon black (CB). A sinusoidal electric field was applied locally over a frequency range from 1 Hz to 100 kHz between the junction points of the grid of carbon fabric strips. The proposed design enabled topographic damage assessment after a high-velocity impact via the local monitoring of the impedance. The data obtained from the IS measurements were depicted by magnitude and phase delay Bode plots and Nyquist plots. The impedance values were used to create a 2D and a multi-layer (3D) contour topographical image of the damaged area, which revealed crucial information about the structural integrity of the composite.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7067
Author(s):  
Jia-Hao He ◽  
Ding-Peng Liu ◽  
Cheng-Hsien Chung ◽  
Hsin-Haou Huang

In this study, infrared thermography is used for vibration-based structural health monitoring (SHM). Heat sources are employed as sensors. An acrylic frame structure was experimentally investigated using the heat sources as structural marker points to record the vibration response. The effectiveness of the infrared thermography measurement system was verified by comparing the results obtained using an infrared thermal imager with those obtained using accelerometers. The average error in natural frequency was between only 0.64% and 3.84%. To guarantee the applicability of the system, this study employed the mode shape curvature method to locate damage on a structure under harsh environments, for instance, in dark, hindered, and hazy conditions. Moreover, we propose the mode shape recombination method (MSRM) to realize large-scale structural measurement. The partial mode shapes of the 3D frame structure are combined using the MSRM to obtain the entire mode shape with a satisfactory model assurance criterion. Experimental results confirmed the feasibility of using heat sources as sensors and indicated that the proposed methods are suitable for overcoming the numerous inherent limitations associated with SHM in harsh or remote environments as well as the limitations associated with the SHM of large-scale structures.


2006 ◽  
Vol 321-323 ◽  
pp. 290-293 ◽  
Author(s):  
Sang Il Lee ◽  
Dong Jin Yoon

Structural health monitoring for carbon nanotube (CNT)/carbon fiber/epoxy composite was verified by the measurement of electrical resistivity. This study has focused on the preparation of carbon nanotube composite sensors and their application for structural health monitoring. The change of the electrical resistance was measured by a digital multimeter under tensile loads. Although a carbon fiber was broken, the electrical connection was still kept by distributed CNT particles in the model composites. As the number of carbon fiber breakages increased, electrical resistivity was stepwise increased. The CNT composites were well responded with fiber damages during the electro-micromechnical test. Carbon nanotube composites can be useful sensors for structural health monitoring to diagnose a structural safety and to prevent a collapse.


Respuestas ◽  
2016 ◽  
Vol 21 (1) ◽  
pp. 45 ◽  
Author(s):  
Daniel Alejandro Rodríguez-Caro ◽  
Enrique Vera-López ◽  
Helver Mauricio Muñoz-Barajas

Antecedentes: La protección catódica por corriente impresa es uno de los métodos para prevenir la corrosión de tuberías o tanques, preservando el estado estructural y la integridad del material. Para que un sistema de protección catódica funcione correctamente debe existir un control sobre las variables eléctricas que intervienen en el proceso, es por ello que se hace necesario monitorear variables tales como (Voltaje, Corriente y Potencial de protección). Objetivo: De esta manera se desarrolla un sistema de adquisición y monitoreo de datos en tiempo real, con el propósito de aumentar la accesibilidad a las variables eléctricas y de esta forma mejorar el funcionamiento del sistema de protección catódica. Métodos: El sistema de monitoreo y análisis de la información se basa en el concepto de SHM (Structural Health Monitoring), el cual consta de; un sistema electrónico de adquisición y envío remoto de señales (micro controlador y sistema GSM de comunicaciones) y un sistema de visualización y análisis de la información en un sistema móvil (celular), usando un servidor web para ello. Teniendo en cuenta que la condición de integridad estructural del ducto está determinada por el correcto funcionamiento del rectificador. Resultados: se logró implementar un sistema de monitoreo y visualización remota de las variables principales de un sistema de protección catódica. Se desarrolló un algoritmo basado en el concepto de SHM, el cual permite correlacionar, generar tendencia y establecer criterios de funcionamiento del sistema de protección catódica que permiten establecer si el sistema está asegurando la integridad estructural del ducto de transporte de crudo. Conclusión: lo novedoso del presente trabajo consiste en mostrar el comportamiento en tiempo real de las variables necesarias para analizar si el ducto está siendo correctamente protegido y generar las alarmas e informes sobre protección catódica, lo cual es la base del concepto de SHM (Structural Health Monitoring).AbstractBackground: Cathodic protection by impressed current is one of the methods to prevent corrosion of pipes or tanks, preserving the structural state and integrity of the material. For a cathodic protection system to function properly there must to be a control over the electrical variables involved in the process, which is why it is necessary to monitor variables such as (voltage, current and potential protection). Objective: to develop a system of data acquisition and monitoring in real time, in order to increase accessibility to electrical variables and thus improve the operation of the cathodic protection system. Methods: The monitoring and information analysis system is based on the concept of SHM (Structural Health Monitoring), which consists of an electronic system for remote acquisition and sending of signals (micro controller and GSM communications system) and a system for visualization and analysis of information in a mobile system (cell) using a web server for it. Given that the condition of structural integrity of the pipeline is determined by the correct operation of the rectifier. Results: It was possible to implement a monitoring and remote viewing system of the main variables of a cathodic protection system. An algorithm based on the concept of SHM was developed, allowing to correlate, generate trend and establish performance criteria for the cathodic protection system which allows to establish whether the system is ensuring the structural integrity of the crude transportation pipeline. Conclusion: the novelty of this work is to show the realtime behavior of the variables needed to analyze whether the pipeline is being properly protected and generate alarms and reports regarding cathodic protection, which is based on the concept of SHM (Structural Health Monitoring).Palabras Clave: corriente, corrosión, Innovación, monitoreo, SHM (Structural Health Monitoring)


2018 ◽  
Vol 18 (1) ◽  
pp. 35-48 ◽  
Author(s):  
Mehrisadat Makki Alamdari ◽  
Nguyen Lu Dang Khoa ◽  
Yang Wang ◽  
Bijan Samali ◽  
Xinqun Zhu

A large-scale cable-stayed bridge in the state of New South Wales, Australia, has been extensively instrumented with an array of accelerometer, strain gauge, and environmental sensors. The real-time continuous response of the bridge has been collected since July 2016. This study aims at condition assessment of this bridge by investigating three aspects of structural health monitoring including damage detection, damage localization, and damage severity assessment. A novel data analysis algorithm based on incremental multi-way data analysis is proposed to analyze the dynamic response of the bridge. This method applies incremental tensor analysis for data fusion and feature extraction, and further uses one-class support vector machine on this feature to detect anomalies. A total of 15 different damage scenarios were investigated; damage was physically simulated by locating stationary vehicles with different masses at various locations along the span of the bridge to change the condition of the bridge. The effect of damage on the fundamental frequency of the bridge was investigated and a maximum change of 4.4% between the intact and damage states was observed which corresponds to a small severity damage. Our extensive investigations illustrate that the proposed technique can provide reliable characterization of damage in this cable-stayed bridge in terms of detection, localization and assessment. The contribution of the work is threefold; first, an extensive structural health monitoring system was deployed on a cable-stayed bridge in operation; second, an incremental tensor analysis was proposed to analyze time series responses from multiple sensors for online damage identification; and finally, the robustness of the proposed method was validated using extensive field test data by considering various damage scenarios in the presence of environmental variabilities.


Sign in / Sign up

Export Citation Format

Share Document