Global Behavior Factor of Frames with Eccentric Bracings and Relationships with the Ductility Requirements

2013 ◽  
Vol 330 ◽  
pp. 948-953
Author(s):  
Mohamed Oussalem Mechiche ◽  
Ali Bouheraoua ◽  
Farid Chalah ◽  
Ourida Hellal ◽  
Abderrahim Bali

During alternate loading cycles, as during earthquakes, the structure behavior becomes inelastic. This is particularly the case for steel structures. They show a better ability to absorb earthquake energy. This energy dissipating capacity is described by the q global behavior factor as used in the Eurocode 8. However, in other earthquake codes, it is expressed by R letter and in others only the X and V shapes bracing systems are taken into account in the seismic design. In this work, a method for determining the global q behavior factor is presented for eccentrically braced steel frames that are designed to resist seismic loads.

2014 ◽  
Vol 8 (1) ◽  
pp. 193-195
Author(s):  
Vincenzo Piluso

In recent years, rapid advances have taken place in earth-quake engineering as applied to steel structures with major emphasis given to (1) development of advanced procedures for seismic performance assessment, (2) development of advanced design procedures for plastic mechanism control, (3) improvements in structural design detailing, (4) better modeling of members and connections for dynamic non-linear analyses, (5) development of new damping devices for supplementary energy dissipation, (6) development of self-centering structural systems, (7) development and testing of new design strategies for reducing structural damage under severe ground motions. Even though such advances have reached in some cases a refinement level justifying their in-troduction in seismic codes, the updating of Eurocode 8 with design criteria and new design strategies reflecting newly developed knowledge is still in delay. In the actual version of Eurocode 8, some advances, such as new structural ty-pologies like braced frames equipped with buckling re-strained braces and dissipative truss moment frames, are still not codified even if they have already gained space in American codes. Because of these rapid advances, weaknesses of Euro-code 8 and new structural typologies to be codified have been recognized and a document focusing on such weak-nesses and new research needs has been published [1]. In particular, the sharing of knowledge obtained has been rec-ognized to be critical to improve the seismic design of steel structures. Therefore, a Thematic Issue on “New Advances in Seismic Design and Assessment of Steel Structures” can be considered timely. Many researchers, all joined by the common interest in design, testing, analysis and assessment of steel structures in seismic areas, have accepted to contribute to this special is-sue. As a result, this thematic issue is composed by eleven contribution covering important design topics for seismic resistant steel structures. Two works [2, 3] are devoted to the seismic design of Concentrically Braced Frames (CBFs), pointing out the drawbacks of the design provisions suggested by Eurocode 8 and also reported in the Italian Technical Code for Construc-tions. In particular, the need to revise the design procedure suggested for columns of CBFs is discussed showing that both the stability and resistance indexes of columns are often exceeded. The results obtained are in agreement with those presented by other researchers [4-8] who recommended de-sign procedures based on a rigorous application of capacity design principles. Also the third manuscript of the thematic issue is devoted to CBFs, but aiming to the development of a new buckling restrained system which can be easily dis-mounted [9]. As it is well known, buckling restrained braces (BRBs) are basically constituted by two parts: an internal slender steel member, known as the “core” and a restraining member, known as the “casing”. The core component has the key role of dissipating energy, while the casing component restrains the brace core from overall buckling in compres-sion. The buckling restraining mechanism can be obtained by enclosing the core (rectangular or cruciform plates, circu-lar rods, etc.) either in a continuous concrete/mortar filled tube or within a “all-steel” casing. Despite of the use of such braces allows to obtain wide and stable hysteresis loops, thus overcoming the main drawbacks of traditional braces due to the poor cyclic response resulting from overall buckling, and their design is already codified in ANSI/AISC 341-10 [10], their use is still not codified in Europe testifying an impor-tant weakness of Eurocode 8. Two papers of the present thematic issue are devoted to beam-to-column connections [11, 12]. The first one [11] presents the results of a wide experimental program recently carried out at Salerno University dealing with extended end plate connections, with and without Reduced Beam Section (RBS), connections with bolted T-stubs and, finally, innova-tive connections equipped with friction dampers. The second work [12] is mainly devoted to the theoretical development of the analysis of the influence of gravity loads on the seis-mic design of RBS connections. In particular, it deserves to be underlined that such influence is commonly neglected in codified rules, such as ANSI/AISC 358-10 [13], because experimental tests constituting the base of the recommended design procedures are typically based on cantilever schemes where gravity loads are not applied.


2019 ◽  
Vol 11 (2) ◽  
Author(s):  
Tiago Ribeiro ◽  
Ana Sousa

Throughout the last two decades, seismic design standards evolved to ever more comprehensive and detailed prescriptions, stressing out the need for design methods that deal with earthquake effects not as actions, but as a design philosophy. The Eurocode 8 adoption as national law throughout the European Union countries and informally in many parts of Africa, Asia and Latin America is the pretext for the current study. It aims to provide some guidance to the seismic design of steel structures as well as to the Eurocode 8 implementation by the designers.Some lines on the preliminary design of structural systems were written based on several real cases of structures designed taking into account the seismic action. Such a content is, usually, relevant in any design guide, given its value in enhancing the design technical and economical content. However, it is now of utter significance at the current context as an essential tool to facilitate the safety checking of several code requirements.Some of the Eurocode 8 prescriptions are then decoded, explained and justified based on the supportive bibliography. The information is subsequently ordered as a design guide, where some procedures are proposed to cope with the code interrelated prescriptions and one structural solution is proposed in order to overcome a design challenge while complying with the code.One last but not less relevant addressed issue is the fact that some Eurocode 8 prescriptions may be reviewed, in the eyes of a designer, given its practical outcome. Such issues are identified, explained and some slight code adjustments are suggested.


2020 ◽  
Vol 787 (12) ◽  
pp. 58-62
Author(s):  
R.S. Olfati ◽  

The principles of designing earthquake-resistant steel frames of industrial buildings are considered. Particular attention is paid to the causes of damage to steel frames due to seismic loads impact, as well as the requirements that must be met when designing steel frames in seismically active areas. The most suitable materials that can be used to strengthen the steel frame, because of its correct operation relative to the resulting seismic loads have been studied. The analysis of loads calculated according to the normative documents of Russia and other countries of the world, and their comparison with each other are presented. An overview of possible experimental methods for determining the strength of the frame under seismic loads is given, as well as a critical assessment of the regulatory documents used, namely the formulas and coefficients used, and alternative solutions are proposed. The influence of soil on the strength parameters of the steel frame under seismic load, as well as the influence of own vibrations and forms of the structure on the pliability of the bases, were studied. Promising design solutions for steel frames in the event of earthquakes are indicated. The experience of designing earthquake-resistant structures abroad was studied and the materials of past accidents in Russia and other countries of the world were analyzed.


2000 ◽  
Vol 27 (6) ◽  
pp. 1192-1206 ◽  
Author(s):  
Robert Tremblay ◽  
Nathalie Robert

This paper presents two different seismic design approaches for multistorey chevron (inverted V) steel braced frames. The first method complies with current Canadian code provisions in which the beams in the bracing bents must be designed to sustain the forces expected to develop up to buckling of the bracing members. In the second approach, the beams must also resist the gravity loads together with a fraction of the brace loads that are induced after buckling of the braces. This second approach aims at minimizing the degradation in storey shear resistance typically exhibited by chevron bracing subjected to strong ground motions, and it is proposed that such braced frames with reinforced beams be designed for reduced seismic loads. Both design procedures are applied to typical multistorey braced frames to examine their economical impacts. Three different beam strength levels were considered for the second design method. The results show that the saving expected from reducing the seismic loads in the second design approach is generally offset by the increase in beam sizes required by this method. However, the braced frames with stronger beams exhibit a much higher storey shear resistance after buckling of the bracing members has occurred.Key words: earthquakes, seismic, design, steel, structures, braced frames, bracing members, beams, columns, connections.


1986 ◽  
Vol 2 (4) ◽  
pp. 703-727 ◽  
Author(s):  
Egor P. Popov

A number of new code developments, largely initiated in California, are taking place in the USA for the seismic design of steel structures. The principal ones are reviewed and commented upon in the paper. Key experimental support for some of the changes is indicated. Major attention is directed to the three main types of steel construction: moment-resisting frames, concentrically braced steel frames, and, the relatively new method for seismic design, eccentric bracing. Some of the proposed and possible practical improvements in moment-resisting connections are given; the reasons for some concern over the use of concentrically braced frames for severe seismic applications are discussed; and a brief overview on the application of eccentrically braced steel frames is presented. The paper concludes with a few remarks on future trends and needs in structural steel seismic design.


Author(s):  
António Silva ◽  
Luís Santos ◽  
Tiago Ribeiro ◽  
José Miguel Castro

Author(s):  
Egor P. Popov

A number of new code developments, largely initiated in California, are taking place in the USA for the seismic design of steel structures. 
The principal ones are reviewed and commented upon in the paper. Key experimental support for some of the changes is indicated. Major attention is directed to the three main types of steel construction: moment resisting frames, concentrically braced steel frames, and, the relatively new method for seismic design, eccentric bracing. Some of the proposed and possible practical improvements in moment-resisting connections are given: the reasons for some concern over the use of concentrically braced frames for severe seismic applications are discussed; and a brief overview on the application of eccentrically braced steel frames is presented. The paper concludes with a few remarks on future trends and needs in structural
steel seismic design.


2021 ◽  
Vol 11 (2) ◽  
pp. 597
Author(s):  
Milan Sokol ◽  
Rudolf Ároch ◽  
Katarína Lamperová ◽  
Martin Marton ◽  
Justo García-Sanz-Calcedo

This paper uses a parametric study to evaluate the significance of the rotational components of Earth’s motion in a seismic design. The parametric study is based on the procedures included in Eurocode 8, Part 6. Although the answer to the question of when the effects of rotational components are important is quite a complex one and requires a more in-depth study, our aim was to try to assess this question in a relatively quick manner and with acceptable accuracy. The first part of the paper is devoted to derivation of a simple formula that can be used for expressing the importance of rotational components in comparison with the classic seismic design without their usage. The quasi-static analysis, assuming inertial forces, is used. A crucial role plays the shape of the fundamental mode of the vibration. Due to simplicity reasons, well-known expression for estimation of the first eigenmode as an exponential function with different power coefficients that vary for different types of buildings is used. The possibility of changing the soil parameters is subsequently included into the formula for estimation of the fundamental frequency of tall buildings. In the next part, the overall seismic analyses of complex FEM models of 3D buildings and chimneys are performed. The results from those analyses are then compared with those from simplified calculations. The importance of the soil characteristics for determination of whether it is necessary to take into account the rotational effects is further discussed.


2011 ◽  
Vol 243-249 ◽  
pp. 499-505
Author(s):  
Can Xing Qiu ◽  
He Tao Hou ◽  
Wei Long Liu ◽  
Ming Lei Wu

A model of full scale one-bay, one storey was tested under low cyclic loading in order to study the hysteretic behavior of steel frames with sandwich composite (SC) panels. According to the failure pattern and damage process of test specimen, seismic behaviors were evaluated. Hysterics loops, skeleton curves, curves of strength degradation, and curves of stiffness degradation, ductility index and viscous damping coefficient were analyzed. Test results show that the failures of panels mainly occurred around the embedded parts, but compared with traditional panels and walls, SC panels exhibit a better integration. The connection between panel and steel frame is vital to the mutual work of the two parts. Finally, seismic design recommendations based on the analysis of ductility index and energy dissipation of the structures are presented.


Sign in / Sign up

Export Citation Format

Share Document