Detection of Rail Fastener Conditions Using Time-Frequency Entropy Based on Orthogonal Empirical Mode Decomposition

2013 ◽  
Vol 333-335 ◽  
pp. 1708-1712 ◽  
Author(s):  
Chong Liu ◽  
Li Hua Zhang ◽  
Tong Qun Ren ◽  
Jun Sheng Liang ◽  
Da Zhi Wang ◽  
...  

A method based on OEMD (Orthogonal Empirical Mode Decomposition) and the theory of time-frequency entropy was applied to detect different rail fastener conditions. The original vertical vibration acceleration response of rail under different fastening conditions was obtained from outdoor experiment. The OEMD method was used to get orthogonal IMFs (Intrinsic Mode Functions) of the original vibration signal. The Hilbert time-frequency spectrum was then obtained based on the orthogonal IMFs and corresponding entropy was calculated and compared. The results show that the method is available to detect different rail fastener conditions.

Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1248
Author(s):  
Rafia Nishat Toma ◽  
Cheol-Hong Kim ◽  
Jong-Myon Kim

Condition monitoring is used to track the unavoidable phases of rolling element bearings in an induction motor (IM) to ensure reliable operation in domestic and industrial machinery. The convolutional neural network (CNN) has been used as an effective tool to recognize and classify multiple rolling bearing faults in recent times. Due to the nonlinear and nonstationary nature of vibration signals, it is quite difficult to achieve high classification accuracy when directly using the original signal as the input of a convolution neural network. To evaluate the fault characteristics, ensemble empirical mode decomposition (EEMD) is implemented to decompose the signal into multiple intrinsic mode functions (IMFs) in this work. Then, based on the kurtosis value, insignificant IMFs are filtered out and the original signal is reconstructed with the rest of the IMFs so that the reconstructed signal contains the fault characteristics. After that, the 1-D reconstructed vibration signal is converted into a 2-D image using a continuous wavelet transform with information from the damage frequency band. This also transfers the signal into a time-frequency domain and reduces the nonstationary effects of the vibration signal. Finally, the generated images of various fault conditions, which possess a discriminative pattern relative to the types of faults, are used to train an appropriate CNN model. Additionally, with the reconstructed signal, two different methods are used to create an image to compare with our proposed image creation approach. The vibration signal is collected from a self-designed testbed containing multiple bearings of different fault conditions. Two other conventional CNN architectures are compared with our proposed model. Based on the results obtained, it can be concluded that the image generated with fault signatures not only accurately classifies multiple faults with CNN but can also be considered as a reliable and stable method for the diagnosis of fault bearings.


2021 ◽  
Author(s):  
Chun-Hsiang Tang ◽  
Christina W. Tsai

<p>Abstract</p><p>Most of the time series in nature are nonlinear and nonstationary affected by climate change particularly. It is inevitable that Taiwan has also experienced frequent drought events in recent years. However, drought events are natural disasters with no clear warnings and their influences are cumulative. The difficulty of detecting and analyzing the drought phenomenon remains. To deal with the above-mentioned problem, Multi-dimensional Ensemble Empirical Mode Decomposition (MEEMD) is introduced to analyze the temperature and rainfall data from 1975~2018 in this study, which is a powerful method developed for the time-frequency analysis of nonlinear, nonstationary time series. This method can not only analyze the spatial locality and temporal locality of signals but also decompose the multiple-dimensional time series into several Intrinsic Mode Functions (IMFs). By the set of IMFs, the meaningful instantaneous frequency and the trend of the signals can be observed. Considering stochastic and deterministic influences, to enhance the accuracy this study also reconstruct IMFs into two components, stochastic and deterministic, by the coefficient of auto-correlation.</p><p>In this study, the influences of temperature and precipitation on the drought events will be discussed. Furthermore, to decrease the significant impact of drought events, this study also attempts to forecast the occurrences of drought events in the short-term via the Artificial Neural Network technique. And, based on the CMIP5 model, this study also investigates the trend and variability of drought events and warming in different climatic scenarios.</p><p> </p><p>Keywords: Multi-dimensional Ensemble Empirical Mode Decomposition (MEEMD), Intrinsic Mode Function(IMF), Drought</p>


Author(s):  
Xueli An ◽  
Junjie Yang

A new vibration signal denoising method of hydropower unit based on noise-assisted multivariate empirical mode decomposition (NA-MEMD) and approximate entropy is proposed. Firstly, the NA-MEMD is used to decompose the signal into a number of intrinsic mode functions. Then, the approximate entropy of each component is computed. According to a preset threshold of approximate entropy, these components are reconstructed to denoise vibration signal of hydropower unit. The analysis results of simulation signal and real-world signal show that the proposed method is adaptive and has a good denoising performance. It is very suitable for online denoising of hydropower unit's vibration signal.


Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. V365-V378 ◽  
Author(s):  
Wei Liu ◽  
Siyuan Cao ◽  
Yangkang Chen

We have introduced a novel time-frequency decomposition approach for analyzing seismic data. This method is inspired by the newly developed variational mode decomposition (VMD). The principle of VMD is to look for an ensemble of modes with their respective center frequencies, such that the modes collectively reproduce the input signal and each mode is smooth after demodulation into baseband. The advantage of VMD is that there is no residual noise in the modes and it can further decrease redundant modes compared with the complete ensemble empirical mode decomposition (CEEMD) and improved CEEMD (ICEEMD). Moreover, VMD is an adaptive signal decomposition technique, which can nonrecursively decompose a multicomponent signal into several quasi-orthogonal intrinsic mode functions. This new tool, in contrast to empirical mode decomposition (EMD) and its variations, such as EEMD, CEEMD, and ICEEMD, is based on a solid mathematical foundation and can obtain a time-frequency representation that is less sensitive to noise. Two tests on synthetic data showed the effectiveness of our VMD-based time-frequency analysis method. Application on field data showed the potential of the proposed approach in highlighting geologic characteristics and stratigraphic information effectively. All the performances of the VMD-based approach were compared with those from the CEEMD- and ICEEMD-based approaches.


2013 ◽  
Vol 281 ◽  
pp. 10-13 ◽  
Author(s):  
Xian You Zhong ◽  
Liang Cai Zeng ◽  
Chun Hua Zhao ◽  
Xian Ming Liu ◽  
Shi Jun Chen

Wind turbine gearbox is subjected to different sorts of failures, which lead to the increasement of the cost. A approach to fault diagnosis of wind turbine gearbox based on empirical mode decomposition (EMD) and teager kaiser energy operator (TKEO) is presented. Firstly, the original vibration signal is decomposed into a number of intrinsic mode functions (IMFs) using EMD. Then the IMF containing fault information is analyzed with TKEO, The experimental results show that EMD and TKEO can be used to effectively diagnose faults of wind turbine gearbox.


2011 ◽  
Vol 2-3 ◽  
pp. 717-721 ◽  
Author(s):  
Xiao Xuan Qi ◽  
Mei Ling Wang ◽  
Li Jing Lin ◽  
Jian Wei Ji ◽  
Qing Kai Han

In light of the complex and non-stationary characteristics of misalignment vibration signal, this paper proposed a novel method to analyze in time-frequency domain under different working conditions. Firstly, decompose raw misalignment signal into different frequency bands by wavelet packet (WP) and reconstruct it in accordance with the band energy to remove noises. Secondly, employ empirical mode decomposition (EMD) to the reconstructed signal to obtain a certain number of stationary intrinsic mode functions (IMF). Finally, apply further spectrum analysis on the interested IMFs. In this way, weak signal is caught and dominant frequency is picked up for the diagnosis of misalignment fault. Experimental results show that the proposed method is able to detect misalignment fault characteristic frequency effectively.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Qingbo He ◽  
Peng Li ◽  
Fanrang Kong

Measured vibration signals from rolling element bearings with defects are generally nonstationary, and are multiscale in nature owing to contributions from events with different localization in time and frequency. This paper presents a novel approach to characterize the multiscale signature via empirical mode decomposition (EMD) for rolling bearing localized defect evaluation. Vibration signal measured from a rolling element bearing is first adaptively decomposed by the EMD to achieve a series of usable intrinsic mode functions (IMFs) carrying the bearing health information at multiple scales. Then the localized defect-induced IMF is selected from all the IMFs based on a variance regression approach. The multiscale signature, called multiscale slope feature, is finally estimated from the regression line fitted over logarithmic variances of the IMFs excluding the defect IMF. The presented feature reveals the pattern of energy transfer among multiple scales due to localized defects, representing an inherent self-similar signature of the bearing health information that is embedded on multiple analyzed scales. Experimental results verify the performance of the proposed multiscale feature, and further discussions are provided.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
ShuaiWei Zhang ◽  
XiaoYuan Yang ◽  
Lin Chen ◽  
Weidong Zhong

Side-channel attacks on cryptographic chips in embedded systems have been attracting considerable interest from the field of information security in recent years. Many research studies have contributed to improve the side-channel attack efficiency, in which most of the works assume the noise of the encryption signal has a linear stable Gaussian distribution. However, their performances of noise reduction were moderate. Thus, in this paper, we describe a highly effective data-preprocessing technique for noise reduction based on empirical mode decomposition (EMD) and demonstrate its application for a side-channel attack. EMD is a time-frequency analysis method for nonlinear unstable signal processing, which requires no prior knowledge about the cryptographic chip. During the procedure of data preprocessing, the collected traces will be self-adaptably decomposed into sum of several intrinsic mode functions (IMF) based on their own characteristics. And then, meaningful IMF will be reorganized to reduce its noise and increase the efficiency of key recovering through correlation power analysis attack. This technique decreases the total number of traces for key recovering by 17.7%, compared to traditional attack methods, which is verified by attack efficiency analysis of the SM4 block cipher algorithm on the FPGA power consumption analysis platform.


Author(s):  
Chao Zhang ◽  
Zhongxiao Peng ◽  
Shuai Chen ◽  
Zhixiong Li ◽  
Jianguo Wang

During the operation process of a gearbox, the vibration signals can reflect the dynamic states of the gearbox. The feature extraction of the vibration signal will directly influence the accuracy and effectiveness of fault diagnosis. One major challenge associated with the extraction process is the mode mixing, especially under such circumstance of intensive frequency. A novel fault diagnosis method based on frequency-modulated empirical mode decomposition is proposed in this paper. Firstly, several stationary intrinsic mode functions can be obtained after the initial vibration signal is processed using frequency-modulated empirical mode decomposition method. Using the method, the vibration signal feature can be extracted in unworkable region of the empirical mode decomposition. The method has the ability to separate such close frequency components, which overcomes the major drawback of the conventional methods. Numerical simulation results showed the validity of the developed signal processing method. Secondly, energy entropy was calculated to reflect the changes in vibration signals in relation to faults. At last, the energy distribution could serve as eigenvector of support vector machine to recognize the dynamic state and fault type of the gearbox. The analysis results from the gearbox signals demonstrate the effectiveness and veracity of the diagnosis approach.


Author(s):  
Xianfeng Fan ◽  
Ming J. Zuo

Local faults in a gearbox cause impacts and the collected vibration signal is often non-stationary. Identification of impulses within the non-stationary vibration signal is key to fault detection. Recently, the technique of Empirical Mode Decomposition (EMD) was proposed as a new tool for analysis of non-stationary signal. EMD is a time series analysis method that extracts a custom set of bases that reflects the characteristic response of a system. The Intrinsic Mode Functions (IMFs) within the original data can be obtained through EMD. We expect that the change in the amplitude of the special IMF’s envelope spectrum will become larger when fault impulses are present. Based on this idea, we propose a new fault detection method that combines EMD with Hilbert transform. The proposed method is compared with both the Hilbert-Huang transform and the wavelet transform using simulated signal and real signal collected from a gearbox. The results obtained show that the proposed method is effective in capturing the hidden fault impulses.


Sign in / Sign up

Export Citation Format

Share Document