Effects of Geometrical Factors on Wind Pressure Characteristics of Cylindrical Roofs with Wind Tunnel Tests

2013 ◽  
Vol 351-352 ◽  
pp. 284-289 ◽  
Author(s):  
Bo Chen ◽  
Qing Shan Yang

With wind tunnel tests, simultaneous pressure measurements are made on 4 cylindrical roof models with different rise-span ratios and roof inclinations. Effects of these geometrical factors on wind pressure characteristics of the roofs are investigated, including mean pressure coefficients, RMS pressure coefficients, skewness, kurtosis, and probability distributions of wind pressure. Results show that the mean vertical wind force coefficient of high rise-span ratio roof is larger than that of the low rise-span ration roof; the mean pressure coefficient distribution of the low rise-span ratio roof is similar to that of RMS pressure coefficients and the skewness (or the kurtosis); the vortex center line occurs at the windward edge for the low rise-span ratio roof with inclination 0°, which occurs at the roof apex for the high rise-span ratio roof. The roof inclination has more effects on the low rise-span ratio roof, the vortex moves from the windward edge to the apex for the roof with inclination 7.2°when the wind flows from the low eave to the high eave. The distribution of the skewness is strongly correlative to that of the kurtosis. The probability distributions of the roof edges and corners deviate obviously from the Guass distribution. If this point is ignored, the peak suction pressure will be underestimated.

2020 ◽  
Vol 2020 ◽  
pp. 1-24
Author(s):  
Fu-Bin Chen ◽  
Xiao-Lu Wang ◽  
Yun Zhao ◽  
Yuan-Bo Li ◽  
Qiu-Sheng Li ◽  
...  

High-rise buildings are very sensitive to wind excitations, and wind-induced responses have always been the key factors for structural design. Facade openings have often been used as aerodynamic measures for wind-resistant design of high-rise buildings to meet the requirement of structural safety and comfort. Obvious wind speed amplifications can also be observed inside the openings. Therefore, implementing wind turbines in the openings is of great importance for the utilization of abundant wind energy resources in high-rise buildings and the development of green buildings. Based on numerical simulation and wind tunnel testing, the wind loads and wind speed amplifications on high-rise buildings with openings are investigated in detail. The three-dimensional numerical simulation for wind effects on high-rise building with openings was firstly carried out on FLUENT 15.0 platform by SST k − ε model. The mean wind pressure coefficients and the wind flow characteristics were obtained. The wind speed amplifications at the opening were analyzed, and the distribution law of wind speed in the openings is presented. Meanwhile, a series of wind tunnel tests were conducted to assess the mean and fluctuating wind pressure coefficients in high-rise building models with various opening rates. The variation of wind pressure distribution at typical measuring layers with wind direction was analyzed. Finally, the wind speed amplifications in the openings were studied and verified by the numerical simulation results.


2021 ◽  
Vol 11 (15) ◽  
pp. 7121
Author(s):  
Shouke Li ◽  
Feipeng Xiao ◽  
Yunfeng Zou ◽  
Shouying Li ◽  
Shucheng Yang ◽  
...  

Wind tunnel tests are carried out for the Commonwealth Advisory Aeronautical Research Council (CAARC) high-rise building with a scale of 1:400 in exposure categories D. The distribution law of extreme pressure coefficients under different conditions is studied. Probability distribution fitting is performed on the measured area-averaged extreme pressure coefficients. The general extreme value (GEV) distribution is preferred for probability distribution fitting of extreme pressure coefficients. From the comparison between the area-averaged coefficients and the value from GB50009-2012, it is indicated that the wind load coefficients from GB50009-2012 may be non-conservative for the CAARC building. The area reduction effect on the extreme wind pressure is smaller than that on the mean wind pressure from the code. The recommended formula of the area reduction factor for the extreme pressure coefficient is proposed in this study. It is found that the mean and the coefficient of variation (COV) for the directionality factors are 0.85 and 0.04, respectively, when the orientation of the building is given. If the uniform distribution is given for the building’s orientation, the mean value of the directionality factors is 0.88, which is close to the directionality factor of 0.90 given in the Chinese specifications.


2013 ◽  
Vol 12 (2) ◽  
pp. 079-086
Author(s):  
Grzegorz Bosak

The paper summarizes the results of wind tunnel tests of the influence of aerodynamic interference on wind action of a high-rise building design in Warsaw. Measurements were accomplished in Wind Engineering Laboratory of Cracow University of Technology. Wind pressures on external surfaces of the building model were acquired in two different situations. Firstly, only the building model was placed in the tunnel working section, secondly, the building model with the nearest surroundings was taken under consideration. A study of the character of wind action differences caused by the nearest surroundings of the building was the main aim of the paper. Wind pressure coefficients on the external building surfaces and the difference of horizontal wind action on full scale were compared.


2014 ◽  
Vol 578-579 ◽  
pp. 1208-1211
Author(s):  
Jian Guo Zhang ◽  
Hui Min Zhuang

In this paper, 2 high-rise building models with ladder and cascade irregularities of elevation were tested in a wind tunnel respectively to measure the mean and fluctuating wind pressure distributions. The mean and RMS (root-mean-square) coefficients of the drag, lift and torsion moment on the measuring layer were obtained from the wind pressures. In the direction which the buildings were positive in the wind, the variation of these above mentioned coefficients with height and the power spectrum densities of the fluctuating wind loads on sudden changed positions were analyzed in detail. Compared with the elevation regular tall building, the wind load characteristics of irregular ones were more complicated.


2014 ◽  
Vol 13 (2) ◽  
pp. 163-171
Author(s):  
Grzegorz Bosak

The paper summarizes the results of wind tunnel tests of a wind action on a high-rise building design in Warsaw. Measurements were accomplished in Wind Engineering Laboratory of Cracow University of Technology. Wind pressures on external surfaces of the building model were acquired. A study of the character of the wind action on a tower of the building was the main aim of the paper. A triangle shape with rounded corners of the cross section of the tower and a complex group of neighbor buildings support aerodynamic analysis in a wind tunnel. Wind pressure coefficients on the external building surfaces and the global horizontal wind action on the building tower on full scale were analyzed.  


2018 ◽  
Vol 31 (6) ◽  
pp. 04018107
Author(s):  
Chunguang Li ◽  
Yan Han ◽  
Ji Zhang ◽  
Shuqian Liu ◽  
C. S. Cai

1995 ◽  
Vol 60 (478) ◽  
pp. 23-30 ◽  
Author(s):  
Ping HE ◽  
Tadahisa KATAYAMA ◽  
Tetsuo HAYASHI ◽  
Jun-ichiro TSUTSUMI ◽  
Masaru NISHIDA

2014 ◽  
Vol 590 ◽  
pp. 341-348
Author(s):  
Shu Guo Liang ◽  
Xiao Hui Peng ◽  
Lei Wang

Field measurement and wind tunnel test of wind pressure on the surfaces of Wuhan International Stock Building were carried out in this paper, and the mean wind pressure coefficients, RMS wind pressure coefficients, wind pressure spectra as well as coherence functions were discussed. Meanwhile wind pressure distributions were analyzed. The results demonstrated that the distribution of the surface mean wind pressure coefficients obtained by wind tunnel test approximately agreed with that by field measurement, especially the mean wind pressure coefficients on the windward obtained by the wind tunnel test fitted those obtained by the field measurement well, while the RMS wind pressure coefficients of the wind tunnel results are smaller than those of field measurement, and the RMS wind pressure coefficients of some measure points of field measurement fluctuated greatly.


Sign in / Sign up

Export Citation Format

Share Document