Wind Tunnel Test of Tall Buildings with Irregularities of Elevation

2014 ◽  
Vol 578-579 ◽  
pp. 1208-1211
Author(s):  
Jian Guo Zhang ◽  
Hui Min Zhuang

In this paper, 2 high-rise building models with ladder and cascade irregularities of elevation were tested in a wind tunnel respectively to measure the mean and fluctuating wind pressure distributions. The mean and RMS (root-mean-square) coefficients of the drag, lift and torsion moment on the measuring layer were obtained from the wind pressures. In the direction which the buildings were positive in the wind, the variation of these above mentioned coefficients with height and the power spectrum densities of the fluctuating wind loads on sudden changed positions were analyzed in detail. Compared with the elevation regular tall building, the wind load characteristics of irregular ones were more complicated.

2014 ◽  
Vol 590 ◽  
pp. 341-348
Author(s):  
Shu Guo Liang ◽  
Xiao Hui Peng ◽  
Lei Wang

Field measurement and wind tunnel test of wind pressure on the surfaces of Wuhan International Stock Building were carried out in this paper, and the mean wind pressure coefficients, RMS wind pressure coefficients, wind pressure spectra as well as coherence functions were discussed. Meanwhile wind pressure distributions were analyzed. The results demonstrated that the distribution of the surface mean wind pressure coefficients obtained by wind tunnel test approximately agreed with that by field measurement, especially the mean wind pressure coefficients on the windward obtained by the wind tunnel test fitted those obtained by the field measurement well, while the RMS wind pressure coefficients of the wind tunnel results are smaller than those of field measurement, and the RMS wind pressure coefficients of some measure points of field measurement fluctuated greatly.


2020 ◽  
Vol 2020 ◽  
pp. 1-24
Author(s):  
Fu-Bin Chen ◽  
Xiao-Lu Wang ◽  
Yun Zhao ◽  
Yuan-Bo Li ◽  
Qiu-Sheng Li ◽  
...  

High-rise buildings are very sensitive to wind excitations, and wind-induced responses have always been the key factors for structural design. Facade openings have often been used as aerodynamic measures for wind-resistant design of high-rise buildings to meet the requirement of structural safety and comfort. Obvious wind speed amplifications can also be observed inside the openings. Therefore, implementing wind turbines in the openings is of great importance for the utilization of abundant wind energy resources in high-rise buildings and the development of green buildings. Based on numerical simulation and wind tunnel testing, the wind loads and wind speed amplifications on high-rise buildings with openings are investigated in detail. The three-dimensional numerical simulation for wind effects on high-rise building with openings was firstly carried out on FLUENT 15.0 platform by SST k − ε model. The mean wind pressure coefficients and the wind flow characteristics were obtained. The wind speed amplifications at the opening were analyzed, and the distribution law of wind speed in the openings is presented. Meanwhile, a series of wind tunnel tests were conducted to assess the mean and fluctuating wind pressure coefficients in high-rise building models with various opening rates. The variation of wind pressure distribution at typical measuring layers with wind direction was analyzed. Finally, the wind speed amplifications in the openings were studied and verified by the numerical simulation results.


2011 ◽  
Vol 94-96 ◽  
pp. 1026-1030
Author(s):  
Yue Ming Luo ◽  
Yue Yin ◽  
Xi Liang Liu

Due to the increasing of wind disaster, structural wind engineering arouses more and more attention recently, with rapid development on spatial structure and continuous innovation of structural style. The main purpose of structural wind engineering is to calculate the wind pressure coefficients of structure. In this paper, the numerical wind tunnel method (NWTM), based on the Computational Fluid Dynamics (CFD), is applied to study wind load. The wind pressure coefficients of reticulated spherical shell with the 4.6m high wall were first determined, using the NWTM. The results are then compared with the wind tunnel test (WTT) and good agreement is found. The feasibility and reliability of NWTM were then verified. As the second example, NWTM is carried out to predict wind-induced pressure on reticulated spherical shell without wall. Further the distribution behavior of wind pressures on this kind of structures is discussed which could provide professionals the reference for the design of structure.


2013 ◽  
Vol 477-478 ◽  
pp. 793-796
Author(s):  
Huan Tang ◽  
Lei Wang

As the significant difference in wind tunnel data between two scaled models of a practical engineering, the cause of this difference, which was regarded as blockage effect, was analyzed in this paper. Research shows that, for wind tunnel test with more surrounding buildings, blockage effect may result in serious data distortion, especially for lateral wind pressure, and existing correction method does not possess universality. Moreover, blockage ratio, as a global concept, is not appropriate to evaluate blockage effect of wind tunnel pressure data at different parts of building models. This study has reference value for blockage effect of wind tunnel pressure date in practical engineering.


2018 ◽  
Vol 22 (6) ◽  
pp. 1488-1500 ◽  
Author(s):  
Yi Li ◽  
Yong-Gui Li ◽  
Qiu-Sheng Li ◽  
Kong-Fah Tee

Although empirical formulas have been provided in relevant design code for estimating wind loads and wind-induced responses on square high-rise buildings, the effects of corner modification treatments on wind loads and wind-induced responses of square high-rise buildings need to be evaluated quantitatively. In this study, wind pressure measurements for a benchmark square high-rise building and three corner modified square high-rise buildings were first carried out to acquire the spatial-temporal varying pressure distributions. Moreover, the corresponding full-scale finite element models were established in ANSYS software to get their dynamic properties. Combined with wind tunnel test results and modal analysis, wind loads and wind-induced responses of the four square high-rise buildings were calculated and compared for designing the best aerodynamic treatment of reducing wind effects on square high-rise buildings. This article aims to provide visual comparisons of wind effect reduction for structural designers and owners of square high-rise buildings.


2014 ◽  
Vol 501-504 ◽  
pp. 925-931 ◽  
Author(s):  
Jian Guo Zhang ◽  
Hui Min Zhuang

The mean and fluctuating wind pressures on an L-shape high-rising building were obtained through simultaneous pressure measurements in a wind tunnel. The shape coefficients on each surface and their variations with wind direction are investigated, which are more detailed than current load codes. Considering that there may be two composition forms, namely integrated-type and separated-type, when an L-shape high-rising building is structurally designed, the amplitude and frequency-domain characteristics of the base moment in along wind, across wind and torsion direction of the above two types are presented respectively. The research results show that the change regularities of shape coefficients on each surface with wind direction are different from each other and current practice using the shape coefficients of a certain wind direction to structurally design is worth discussing; the characteristics of three directions base moments on an integrated-type L-shape high-rising building are rather complicated and those on a separated-type building appear as obvious interfering effects.


2014 ◽  
Vol 13 (2) ◽  
pp. 163-171
Author(s):  
Grzegorz Bosak

The paper summarizes the results of wind tunnel tests of a wind action on a high-rise building design in Warsaw. Measurements were accomplished in Wind Engineering Laboratory of Cracow University of Technology. Wind pressures on external surfaces of the building model were acquired. A study of the character of the wind action on a tower of the building was the main aim of the paper. A triangle shape with rounded corners of the cross section of the tower and a complex group of neighbor buildings support aerodynamic analysis in a wind tunnel. Wind pressure coefficients on the external building surfaces and the global horizontal wind action on the building tower on full scale were analyzed.  


2013 ◽  
Vol 351-352 ◽  
pp. 284-289 ◽  
Author(s):  
Bo Chen ◽  
Qing Shan Yang

With wind tunnel tests, simultaneous pressure measurements are made on 4 cylindrical roof models with different rise-span ratios and roof inclinations. Effects of these geometrical factors on wind pressure characteristics of the roofs are investigated, including mean pressure coefficients, RMS pressure coefficients, skewness, kurtosis, and probability distributions of wind pressure. Results show that the mean vertical wind force coefficient of high rise-span ratio roof is larger than that of the low rise-span ration roof; the mean pressure coefficient distribution of the low rise-span ratio roof is similar to that of RMS pressure coefficients and the skewness (or the kurtosis); the vortex center line occurs at the windward edge for the low rise-span ratio roof with inclination 0°, which occurs at the roof apex for the high rise-span ratio roof. The roof inclination has more effects on the low rise-span ratio roof, the vortex moves from the windward edge to the apex for the roof with inclination 7.2°when the wind flows from the low eave to the high eave. The distribution of the skewness is strongly correlative to that of the kurtosis. The probability distributions of the roof edges and corners deviate obviously from the Guass distribution. If this point is ignored, the peak suction pressure will be underestimated.


Sign in / Sign up

Export Citation Format

Share Document