Whole-Process Analysis of the Mechanical Responses of High Formwork Support Systems during Concrete Pouring

2013 ◽  
Vol 368-370 ◽  
pp. 1583-1590
Author(s):  
Chang Ming Hu ◽  
Yan Guo ◽  
Jie Wang ◽  
Qiong Wu

An underground club in Xian is taken as the research object to explore the mechanical response of the internal poles of its high formwork support system during concrete pouring. The internal force static measurement of the high formwork support system is carried out. Each stage of the concrete pouring is simulated by the finite element analysis software ANSYS in the form of load step, whose results are contrasted with the measured results. The contrast reveals that the concrete pouring sequence has direct influence on the tendency of poles axial force and on the location of maximum axial force and that it is reasonable to adopt imaginary horizontal force which simulates the initial defects to carry out the overall stability analysis of the high formwork support system. It is pointed out that the program of setting up the formwork and the concrete pouring sequence should be determined with the finite element analysis.

2014 ◽  
Vol 945-949 ◽  
pp. 1135-1138
Author(s):  
Tao Liang ◽  
Chun Ling Meng ◽  
Yang Li ◽  
Xiu Hua Zhao

The finite element analysis of large air cooling tower was carried out using ABAQUS. On the basis of strength above,8 types of the axial force are analyzed and summarized, find valuable rules, and put forward the further optimization design. So that it can satisfy the strength and stability of air cooling tower, the structure is more reasonable, reduce weight, reduce the cost.


2016 ◽  
Vol 723 ◽  
pp. 388-393
Author(s):  
Ze Yang ◽  
Jian Yong Li ◽  
Yan Ping Zhang ◽  
Hai Lian Li ◽  
Xing Hua Gao

In view of the significant role of material science in industrial production, the analysis and research on mechanical properties of materials and parts are of great significance to equipment production and machining. This paper, based on the finite element analysis of ANSYS software, will carry out the exploration and research on characteristics of material fatigue damage within mechanical materials and parts in a degree. Then, the general laws of material fatigue properties will be concluded from theoretical analysis, drawing of curve and equal-life curve as well as some comparisons between materials and parts. Finally, the correctness will be tested with the help of ANSYS software, which is an excellent finite element analysis software with abilities of modeling and simulation. Meanwhile, the whole process can provide somewhat valuable references and citations for practical applications, teachings, researches and academic conferences on material fatigue damage theory.


2011 ◽  
Vol 250-253 ◽  
pp. 1050-1053
Author(s):  
Jun Ho Shin ◽  
Nam Yong Jee ◽  
Leslie J. Struble ◽  
R. James Kirkpatrick

The objective of this study is to develop a numerical model based on microstructural images of concrete and fundamental material properties of each constituent of concrete subjected to alkali-silica reaction (ASR). A microstructure-based finite element approach is employed directly to analyze the mechanical response of concrete to ASR. The modeling work involves acquiring and processing of microstructural images of specimens suffering from ASR using scanning electron microscopy, and implementing finite element program to analyze the microstructural images. The formulation of this model is based on pressure caused by the ASR product and on properties such as Young’s modulus and Poisson’s ratio. The finite element analysis program used to simulate structural behavior of structures attacked by ASR is object-oriented finite element developed at National Institute of Standards and Technology. The numerical results from this model are compared with experimental data, which have been measured using ASTM standard test C1260. The results show that the development and widening of cracks by formation and swelling of ASR gel cause the majority of expansion of mortar specimens rather than elastic elongation due to gel swelling.


2014 ◽  
Vol 580-583 ◽  
pp. 2232-2234
Author(s):  
Li Liu ◽  
Ya Nan Liu ◽  
Bo Wang ◽  
Ju Chao Wang

Bridging play a important role in guarantee the stability of the high-formwork support system as a whole, its arrangement location will affect the force of the frame body. This paper used the finite element analysis method to compare the bridging arrangement location under the beam with the bridging under the board which was arranged according to certain modules. the results show, the arrangement spacing of the bridging under the beam is greater than the bridging under the board, but its frame body lateral migration is smaller, sharing part of the axial force of beam bottom rod at the same time, that means the bridging under the beam is more beneficial for the stability of high-formwork support system.


2010 ◽  
Vol 163-167 ◽  
pp. 998-1004 ◽  
Author(s):  
Dong Hui Cheng ◽  
Ya Min Yi ◽  
Tian Feng Wang

In order to study the mechanical behavior on concrete continuous beams strengthened with CFRP sheets, three two-span continuous beams strengthened with CFRP sheets in the control section at each span were fabricated and tested with two-point loading type. The test data such as load, crack distribution and deformation were obtained in different stages. Based on the test data, the finite element analysis on the continuous beams strengthened with CFRP sheets was carried out by ANSYS software. The variation of steel stress and deflection of control section in the intermediate support and the bearing capacity in different stages were obtained, moreover, the results show that the ultimate strength of continuous beams strengthened with CFRP sheets has not improved largely in elastic state while increased significantly in plastic state, and the continuous beams displayed obviously internal force redistribution.


2013 ◽  
Vol 405-408 ◽  
pp. 1135-1138
Author(s):  
Chi Chen ◽  
Tian Lu ◽  
Hao Yuan Chen ◽  
Li Cheng Tian

Taking QTZ630 tower crane as the research object, this thesis will use parameter language APDL of finite element analysis software ANSYS direct modeling. Then set the basic parameters of the material, mesh, and finally conduct static analysis. Combining the actual situation, the normal operation of tower cranes in three different conditions of deformation and internal force is analyzed, the results show that three conditions of the maximum displacement and stress values to meet the design requirements specification and there is still a material balance itself.


1985 ◽  
Vol 13 (3) ◽  
pp. 127-146 ◽  
Author(s):  
R. Prabhakaran

Abstract The finite element method, which is a numerical discretization technique for obtaining approximate solutions to complex physical problems, is accepted in many industries as the primary tool for structural analysis. Computer graphics is an essential ingredient of the finite element analysis process. The use of interactive graphics techniques for analysis of tires is discussed in this presentation. The features and capabilities of the program used for pre- and post-processing for finite element analysis at GenCorp are included.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


Sign in / Sign up

Export Citation Format

Share Document