Test and Finite Element Analysis of Concrete Continuous Beams Strengthened with CFRP Sheets

2010 ◽  
Vol 163-167 ◽  
pp. 998-1004 ◽  
Author(s):  
Dong Hui Cheng ◽  
Ya Min Yi ◽  
Tian Feng Wang

In order to study the mechanical behavior on concrete continuous beams strengthened with CFRP sheets, three two-span continuous beams strengthened with CFRP sheets in the control section at each span were fabricated and tested with two-point loading type. The test data such as load, crack distribution and deformation were obtained in different stages. Based on the test data, the finite element analysis on the continuous beams strengthened with CFRP sheets was carried out by ANSYS software. The variation of steel stress and deflection of control section in the intermediate support and the bearing capacity in different stages were obtained, moreover, the results show that the ultimate strength of continuous beams strengthened with CFRP sheets has not improved largely in elastic state while increased significantly in plastic state, and the continuous beams displayed obviously internal force redistribution.

2011 ◽  
Vol 368-373 ◽  
pp. 1038-1041
Author(s):  
An Hong Bao ◽  
Zhen Yu Qiu ◽  
Peng Wang

Debonding of concrete occurs when the interface principal stress reaches the ultimate tensile strength. We propose the use of carbon fiber plate attached to the beam bottom, which makes finite element analysis of the mechanical properties of debonding concrete beams more reasonable. In addition, formulas of this theory are given and applied in the finite element analysis. Finally, it is shown by a number of experimental results.


2013 ◽  
Vol 368-370 ◽  
pp. 1583-1590
Author(s):  
Chang Ming Hu ◽  
Yan Guo ◽  
Jie Wang ◽  
Qiong Wu

An underground club in Xian is taken as the research object to explore the mechanical response of the internal poles of its high formwork support system during concrete pouring. The internal force static measurement of the high formwork support system is carried out. Each stage of the concrete pouring is simulated by the finite element analysis software ANSYS in the form of load step, whose results are contrasted with the measured results. The contrast reveals that the concrete pouring sequence has direct influence on the tendency of poles axial force and on the location of maximum axial force and that it is reasonable to adopt imaginary horizontal force which simulates the initial defects to carry out the overall stability analysis of the high formwork support system. It is pointed out that the program of setting up the formwork and the concrete pouring sequence should be determined with the finite element analysis.


2013 ◽  
Vol 648 ◽  
pp. 59-62
Author(s):  
Qi Yin Shi ◽  
Yi Tao Ge ◽  
Li Lin Cao ◽  
Zhao Chang Zhang

In this study, based on the test of the high strength materials of steel-encased concrete composite continuous beam, the ultimate flexural capacity of 8 composite continuous beams are analyzed by using the finite element analysis software ABAQUS. Numerical results show that it is a very good agreement for the load-deflection curves which obtained by finite element method (FEM) and those by the test results, and the error control is less than 8.5%. When selecting and utilizing appropriate cyclic constitutive model, element model and failure criterion of high strength steel and high strength concrete, the accuracy of the calculation can be improved better.


2013 ◽  
Vol 405-408 ◽  
pp. 1135-1138
Author(s):  
Chi Chen ◽  
Tian Lu ◽  
Hao Yuan Chen ◽  
Li Cheng Tian

Taking QTZ630 tower crane as the research object, this thesis will use parameter language APDL of finite element analysis software ANSYS direct modeling. Then set the basic parameters of the material, mesh, and finally conduct static analysis. Combining the actual situation, the normal operation of tower cranes in three different conditions of deformation and internal force is analyzed, the results show that three conditions of the maximum displacement and stress values to meet the design requirements specification and there is still a material balance itself.


1985 ◽  
Vol 13 (3) ◽  
pp. 127-146 ◽  
Author(s):  
R. Prabhakaran

Abstract The finite element method, which is a numerical discretization technique for obtaining approximate solutions to complex physical problems, is accepted in many industries as the primary tool for structural analysis. Computer graphics is an essential ingredient of the finite element analysis process. The use of interactive graphics techniques for analysis of tires is discussed in this presentation. The features and capabilities of the program used for pre- and post-processing for finite element analysis at GenCorp are included.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


2018 ◽  
Vol 55 (4) ◽  
pp. 666-675
Author(s):  
Mihaela Tanase ◽  
Dan Florin Nitoi ◽  
Marina Melescanu Imre ◽  
Dorin Ionescu ◽  
Laura Raducu ◽  
...  

The purpose of this study was to determinate , using the Finite Element Analysis Method, the mechanical stress in a solid body , temporary molar restored with the self-curing GC material. The originality of our study consisted in using an accurate structural model and applying a concentrated force and a uniformly distributed pressure. Molar structure was meshed in a Solid Type 45 and the output data were obtained using the ANSYS software. The practical predictions can be made about the behavior of different restorations materials.


2013 ◽  
Vol 83 (7) ◽  
pp. 1087-1096 ◽  
Author(s):  
A. Ranjbaran ◽  
H. Rousta ◽  
M. O. Ranjbaran ◽  
M. A. Ranjbaran ◽  
M. Hashemi ◽  
...  

2012 ◽  
Vol 24 (3) ◽  
pp. 326-333 ◽  
Author(s):  
Yu-Chi Chen ◽  
Wen-Ching Ko ◽  
Han-Lung Chen ◽  
Hsu-Ching Liao ◽  
Wen-Jong Wu ◽  
...  

We propose a model to give us a method to investigate the characteristic three-dimensional directivity in an arbitrarily configured flexible electret-based loudspeaker. In recent years, novel electret loudspeakers have attracted much interest due to their being lightweight, paper thin, and possessing excellent mid- to high-frequency responses. Increasing or decreasing the directivity of an electret loudspeaker makes it excellent for adoption to many applications, especially for directing sound to a particular area or specific audio location. Herein, we detail a novel electret loudspeaker that possesses various directivities and is based on various structures of spacers instead of having to use multichannel amplifiers and a complicated digital control system. In order to study the directivity of an electret loudspeaker based on an array structure which can be adopted for various applications, the horizontal and vertical polar directivity characteristics as a function of frequency were simulated by a finite-element analysis model. To validate the finite-element analysis model, the beam pattern of the electret loudspeaker was measured in an anechoic room. Both the simulated and experimental results are detailed in this article to validate the various assertions related to the directivity of electret cell-based smart speakers.


Sign in / Sign up

Export Citation Format

Share Document