Weak-Points Diagnosis and Optimization of Shield Machine Cutter Tool Based on Characteristic Parameters

2016 ◽  
Vol 693 ◽  
pp. 1479-1485 ◽  
Author(s):  
Jian Zhao ◽  
Xue Wu Hong ◽  
Ming Yu ◽  
Zhi Peng Gao ◽  
Wen Jin Wang

Shield machine plays an indispensable role in the mining, transportation, underground engineering, hydraulic engineering and municipal construction. Shield cutters of shield construction process often appears serious deformation, damage that leads to engineering accident, or even a threat to human life and safety. In order to provide high precise data for shield machine cutter tool dynamic modification and to diagnose the shield machine cutter tool fault, the dynamic characteristic of the shield machine cutter tool system, which is the main component of a shield machine cutter tool, has to be obtained precisely. The compute modal parameters identification method base on the finite element method is proposed to identify the modal parameters of the shield machine cutter tool. By means of Solidwords software, the knife ring structure of the shield machine tool and the tool is designed; then build the tool the finite element model, modal analysis, obtained the dynamic characteristics, and find out the weak link, put forward the improvement measures and prolong its life. Therefore, the study on dynamic characteristics of shield machine cutter, for the optimization design of domestic tool, has an important significance improve tool life.

2010 ◽  
Vol 102-104 ◽  
pp. 339-343
Author(s):  
Ze Yu Weng ◽  
Shao Heng Hu ◽  
Nan Nan Zhang ◽  
Hong Gang Ding ◽  
Hong Wu You

The dynamic characteristics of the grinding machines have an impact on its machining quality and cutting efficiency. In this paper, through the analysis of the structural features of the Large CNC gantry surface grinding machine, the finite element model of structure of the grinder was established on the base of the simplified machine structure, on which carried out its dynamics analysis, obtaining the modal parameters of the orders under different mode shapes. The effect on the dynamic characteristics of machine tools was analyzed under different mode shapes, then the weak link of the surface grinding machine was given, and then how to improve the structural design weakness of surface grinding machine was discussed, all of which provided theoretical basis for improvemental design for the structure of the large CNC gantry surface grinding machine.


2010 ◽  
Vol 37-38 ◽  
pp. 127-130
Author(s):  
Da Ke Tian ◽  
Rong Qiang Liu ◽  
Zong Quan Deng ◽  
Hong Wei Guo

Analysis of dynamic characteristics is one of the important parts of structure analysis for space deployable antenna. In order to study the dynamic characteristics of truss structure for space deployable truss antenna, according to the structure composition, the finite element model of truss structure is built by using ANSYS software, and the modal analysis is carried out by finite element method, then the natural frequencies and the features of vibration modes are obtained. It is emphatically analyzed that the influence of structure parameters such as chords, vertical beams, diagonal beams and crossing cables on the first natural frequency, and the change curves of natural frequency are given. The results can provide the theoretical basis for the antenna’s structural optimization design and dynamic modification.


2012 ◽  
Vol 157-158 ◽  
pp. 27-32
Author(s):  
Guang Lin Shi ◽  
Kun Wu ◽  
Lin Zhu

This paper based on a settled type of structure concerning hydraulic excavator rotary platform as the research object, use the method of finite element analysis to build the finite element model in the conditions of three typicals of representative working condition about this rotary platform. By the analysis concerning the strength and stiffness of this platform structure based on the builded model, the weak link about this structure can be find out by us. Finally , according to the optimization structure design about this device, the maximum combined stress related to the easy fatigue failure area in all working condition could be significantly reduced from 162.93MPa to 115.05MPa, decrease by 29.4 percent. Thus, the structure performance could be greatly improved on the premise of guarantee the weight of construction.


2012 ◽  
Vol 430-432 ◽  
pp. 828-833
Author(s):  
Qiu Sheng Ma ◽  
Yi Cai ◽  
Dong Xing Tian

In this paper, based on ANSYS the topology optimization design for high pressure storage tank was studied by the means of the finite element structural analysis and optimization. the finite element model for optimization design was established. The design variables influence factors and rules on the optimization results are summarized. according to the calculation results the optimal design result for tank is determined considering the manufacturing and processing. The calculation results show that the method is effective in optimization design and provide the basis to further design high pressure tank.


2014 ◽  
Vol 548-549 ◽  
pp. 383-388
Author(s):  
Zhi Wei Chen ◽  
Zhe Cui ◽  
Yi Jin Fu ◽  
Wen Ping Cui ◽  
Li Juan Dong ◽  
...  

Parametric finite element model for a commonly used telescopic boom structure of a certain type of truck-mounted crane has been established. Static analysis of the conventional design configuration was performed first. And then an optimization process has been carried out to minimize the total weight of the telescopic structures. The design variables include the geometric shape parameters of the cross-sections and the integrated structural parameters of the telescopic boom. The constraints include the maximum allowable equivalent stresses and the flexure displacements at the tip of the assembled boom structure in both the vertical direction and the circumferential direction of the rotating plane. Compared with the conventional design, the optimization design has achieved a significant weight reduction of up to 24.3%.


2012 ◽  
Vol 490-495 ◽  
pp. 2785-2789
Author(s):  
Dong Sun ◽  
Xu Dong Yang

The milling planer bed is one of the most important foundational parts for the entire machine, sufficient stiffness is required. The posterior segment of a certain milling planer bed is regarded as the optimization object in this paper. Three-dimensional modeling method is used to calculate the exact weight of the bed and then finite element analysis is used to research the static and dynamic characteristics before and after weight-reduction. The weak link of the bed is found out and a improvement scheme is put forward ensuring lower production costs under the premise of sufficient rigidity.


2009 ◽  
Vol 419-420 ◽  
pp. 89-92
Author(s):  
Zhuo Yi Yang ◽  
Yong Jie Pang ◽  
Zai Bai Qin

Cylinder shell stiffened by rings is used commonly in submersibles, and structure strength should be verified in the initial design stage considering the thickness of the shell, the number of rings, the shape of ring section and so on. Based on the statistical techniques, a strategy for optimization design of pressure hull is proposed in this paper. Its central idea is that: firstly the design variables are chosen by referring criterion for structure strength, then the samples for analysis are created in the design space; secondly finite element models corresponding to the samples are built and analyzed; thirdly the approximations of these analysis are constructed using these samples and responses obtained by finite element model; finally optimization design result is obtained using response surface model. The result shows that this method that can improve the efficiency and achieve optimal intention has valuable reference information for engineering application.


2011 ◽  
Vol 411 ◽  
pp. 88-93
Author(s):  
Hong Lin Zhao ◽  
Yun Fei Sun ◽  
Rui Chen ◽  
Yu Mei Huang ◽  
Guang Peng Zhang ◽  
...  

The parameters of joint parts must be included in the finite element model of a whole grinding machine. The subject investigated in this paper is B2-K3000 high-precision composite flexible grinding machine. Through finite element modeling, the joint part parameters are integrated into the whole grinding machine model to establish a dynamic model and then analyze its static and dynamic characteristics. The result shows that the whole grinding machine possesses good features, but it still needs to be improved. This paper gives suggestions for its structure development and application.


2011 ◽  
Vol 480-481 ◽  
pp. 1496-1501
Author(s):  
Liu Hui

In order to study the dynamic characteristics of a super-long-span cable-stayed bridge which is semi-floating system, the spatial finite element model of this cable-stayed bridge was established in ANSYS based on the finite element theory.Modal solution was conducted using subspace iteration method, and natural frequencies and vibration modes were obtained.The dynamic characteristics of this super-long-span cable-stayed bridge were then analyzed.Results showed that the super-long-span cable-stayed bridge of semi-floating system has long basic cycle, low natural frequencies, dense modes and intercoupling vibration modes.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Halil Nohutcu

Historical structures are the values that are of great importance to that country, showing the roots of a country, and must be passed on from generation to generation. This study attempts to make a contribution to this goal. Seismic damage pattern estimation in a historical brick masonry minaret under different ground motion levels is investigated by using updated finite element models based on ambient vibration data in this study. Imaret Mosque which was built in 1481 AD is selected for an application. Surveying measurement and material tests were conducted to obtain a 3D solid model and mechanical properties of the components of the minaret. Firstly, the initial 3D finite element model of the minaret was analyzed and numerical dynamic characteristics of the minaret were obtained. Then, ambient vibration tests as well as operational modal analysis were implemented in order to obtain the experimental dynamic characteristics of the minaret. The initial finite element model of the minaret was updated by using the experimental dynamic results. Lastly, linear and nonlinear time-history analyses of the updated finite element model of the minaret were carried out using the acceleration records of two different level earthquakes that occurred in Turkey, in Afyon-Dinar (1995) and Çay-Sultandağı (2002). A concrete damage plasticity model is considered in the nonlinear analyses. The conducted analyses indicate that the compressive and tension stress results of the linear analyses are not as realistic as the nonlinear analysis results. According to the nonlinear analysis, the Çay-Sultandağı earthquake would inflict limited damage on the minaret, whereas the Dinar earthquake would damage some parts of the elements in the transition segment of the minaret.


Sign in / Sign up

Export Citation Format

Share Document