An Autonomous Underwater Vehicle for Competition

2013 ◽  
Vol 380-384 ◽  
pp. 595-600
Author(s):  
Hai Tian ◽  
Bo Hu ◽  
Can Yu Liu ◽  
Guo Chao Xie ◽  
Hui Min Luo

The research of this paper was derived from the small autonomous underwater vehicle (AUV)Raider well performed in the 15th International Underwater Vehicle Competition (IAUVC),San Diego. In order to improve the performance of underwater vehicle, the control system of performance motion played an important role on autonomous underwater vehicles stable motion, and the whole control system of AUV is the main point. Firstly, based on the motion equations of six degrees of freedom, the paper simplified the dynamical model reasonably in allusion; Due to the speed of Raider to find the target was very low, this paper considered the speed was approximately zero and only considered the vertical motion. Therefore, this paper established the vertical hydrodynamic model of Raider, obtaining the transfer equation of vertical motion. Through the experiment and Matlab/Simulink simulation, this paper got the actual depth of the step response curve and simulation curve, and verified the validity of the vertical hydrodynamic model and the correlation coefficient.

2021 ◽  
Vol 29 (1) ◽  
pp. 97-110
Author(s):  
V.S. Bykova ◽  
◽  
A.I. Mashoshin ◽  
I.V. Pashkevich ◽  
◽  
...  

Two safe navigation algorithms for autonomous underwater vehicles are described: algorithm for avoidance of point obstacles including all the moving underwater and surface objects, and limited size bottom objects, and algorithm for bypassing extended obstacles such as bottom elevations, rough lower ice edge, garbage patches. These algorithms are developed for a control system of a heavyweight autonomous underwater vehicle.


Author(s):  
Uzair Ansari ◽  
Abdulrahman H Bajodah

A novel two-loop structured robust generalized dynamic inversion–based control system is proposed for autonomous underwater vehicles. The outer (position) loop of the generalized dynamic inversion control system utilizes proportional-derivative control of the autonomous underwater vehicle’s inertial position errors from the desired inertial position trajectories, and it provides the reference yaw and pitch attitude angle commands to the inner loop. The inner (attitude) loop utilizes generalized dynamic inversion control of a prescribed asymptotically stable dynamics of the attitude angle errors from their reference values, and it provides the required control surface deflections such that the desired inertial position trajectories of the vehicle are tracked. The dynamic inversion singularity is avoided by augmenting a dynamic scaling factor within the Moore–Penrose generalized inverse in the particular part of the generalized dynamic inversion control law. The involved null control vector in the auxiliary part of the generalized dynamic inversion control law is constructed to be linear in the pitch and yaw angular velocities, and the proportionality gain matrix is designed to guarantee global closed-loop asymptotic stability of the vehicle’s angular velocity dynamics. An additional sliding mode control element is included in the particular part of the generalized dynamic inversion control system, and it works to robustify the closed-loop system against tracking performance deterioration due to generalized inversion scaling, such that semi-global practically stable attitude tracking is guaranteed. A detailed six degrees-of-freedom mathematical model of the Monterey Bay Aquarium Research Institute autonomous underwater vehicle is used to evaluate the control system design, and numerical simulations are conducted to demonstrate closed-loop system performance under various types of autonomous underwater vehicle maneuvers, under both nominal and perturbed autonomous underwater vehicle system’s mathematical model parameters.


2020 ◽  
Vol 17 (2) ◽  
pp. 172988142092101
Author(s):  
Zhang Huajun ◽  
Tong Xinchi ◽  
Guo Hang ◽  
Xia Shou

An accurate model is important for the engineer to design a robust controller for the autonomous underwater vehicle. There are two factors that make the identification difficult to get accurate parameters of an AUV model in practice. Firstly, the autonomous underwater vehicle model is a coupled six-degrees-of-freedom model, and each state of the kinetic model influences the other five states. Secondly, there are more than 100 hydrodynamic coefficients which have different effects, and some parameters are too small to be identified. This article proposes a simplified six-degrees-of-freedom model that contains the essential parameters and employs the multi-innovation least squares algorithm based on the recursive least squares algorithm to obtain the parameters. The multi-innovation least squares algorithm leverages several past errors to identify the parameters, and the identification results are more accurate than those of the recursive least squares algorithm. It collects the practical data through an experiment and designs a numerical program to identify the model parameters. Meanwhile, it compares the performances of the multi-innovation least squares algorithm with those of the recursive least squares algorithm and the least square method, the results show that the multi-innovation least squares algorithm is the most effective way to identify parameters for the simplified six-degrees-of-freedom model.


Author(s):  
Mohammad Saghafi ◽  
Roham Lavimi

In this research, the flow around the autonomous underwater vehicles with symmetrical bodies is numerically investigated. Increasing the drag force in autonomous underwater vehicles increases the energy consumption and decreases the duration of underwater exploration and operations. Therefore, the main objective of this research is to decrease drag force with the change in geometry to reduce energy consumption. In this study, the decreasing or increasing trends of the drag force of axisymmetric bare hulls have been studied by making alterations in the curve equations and creating the optimal geometric shapes in terms of hydrodynamics for the noses and tails of autonomous underwater vehicles. The incompressible, three-dimensional, and steady Navier–Stokes equations have been used to simulate the flow. Also, k-ε Realizable with enhanced wall treatment was used for turbulence modeling. Validation results were acceptable with respect to the 3.6% and 1.4% difference with numerical and experimental results. The results showed that all the autonomous underwater vehicle hulls designed in this study, at an attack angle of 0°, had a lower drag force than the autonomous underwater vehicle hull used for validation except geometry no. 1. In addition, nose no. 3 has been selected as the best nose according to the lowest value of stagnation pressure, and also tail no. 3 has been chosen as the best tail due to the production of the lowest vortex. Therefore, geometry no. 5 has been designed using nose and tail no. 3. The comparison made here showed that the maximum drag reduction in geometry no. 5 was equal to 26%, and therefore, it has been selected as the best bare hull in terms of hydrodynamics.


2018 ◽  
Vol 212 (1) ◽  
pp. 105-123
Author(s):  
Tomasz Praczyk ◽  
Piotr Szymak ◽  
Krzysztof Naus ◽  
Leszek Pietrukaniec ◽  
Stanisław Hożyń

Abstract The paper presents the first part of the final report on all the experiments with biomimetic autono-mous underwater vehicle (BAUV) performed within the confines of the project entitled ‘Autonomous underwater vehicles with silent undulating propulsion for underwater ISR’, financed by Polish National Center of Research and Development. The report includes experiments in the swimming pool as well as in real conditions, that is, both in a lake and in the sea. The tests presented in this part of the final report were focused on low-level control.


2018 ◽  
Vol 213 (2) ◽  
pp. 53-67 ◽  
Author(s):  
Tomasz Praczyk ◽  
Piotr Szymak ◽  
Krzysztof Naus ◽  
Leszek Pietrukaniec ◽  
Stanisław Hożyń

Abstract The paper presents the second part of the final report on all the experiments with biomimetic autonomous underwater vehicle (BAUV) performed within the confines of the project entitled ‘Autonomous underwater vehicles with silent undulating propulsion for underwater ISR’, financed by Polish National Center of Research and Development. The report includes experiments on the swimming pool as well as in real conditions, that is, both in a lake and in the sea. The tests presented in this part of the final report were focused on navigation and autonomous operation.


Sign in / Sign up

Export Citation Format

Share Document