Experimental Investigation of the Water-Based Fog Screen System in Photoelectric Interference

2013 ◽  
Vol 385-386 ◽  
pp. 1921-1926
Author(s):  
Yue Jun He ◽  
Bao Lin Ren ◽  
He Gang Xu ◽  
Wang Hua ◽  
Chun Heng Li

The water-based fog screen system for photoelectric interference, with low cost, energy-saving and environmental features, is a new type of interference material. This article describes and investigates the physical characteristics of the water-based fog screen, the principle behind the interference of visible light, infrared and other electromagnetic waves using mist, the composition of the water-based fog screen system and its significance in military applications.

2014 ◽  
Vol 1035 ◽  
pp. 514-519
Author(s):  
Jing Bo Zhao ◽  
Hong Yao ◽  
Juan Na Jiang

In order to realize the macroscopic objects invisible in the visible region, according to the law of refraction, total internal reflection law and symmetry reduction transformation method, a new type of visible light stealth cloak was designed. The cloak was prepared using the ordinary homogeneous and isotropic glass materials, which can guide the light around the hidden region, and the direction of propagation of light has not changed. Thus the macroscopic object achieve the perfect stealth. The invisible cloak in air environment for arbitrary polarized visible light have stealth features, easy processing, low cost, has potential application value.


2011 ◽  
Vol 343-344 ◽  
pp. 199-204
Author(s):  
Hsuan Jui Chen ◽  
Che Ming Chiang ◽  
Richard S. Horng ◽  
Shin Ku Lee

A new type of poly-crystalline amorphous thin film photovoltaic module with high visible light transmittance was developed for use in a building. The method of PECVD (Plasma-enhanced chemical vapor deposition) was applied to produce satisfactory high color rendering index (HCRI) BIPV module of good quality with visible light transmittance as high as 26.9%, solar radiation absorptance below 60% and shading coefficient equal to 54%. The thermal and optical properties of HCRI BIPV module are studied in some detail and the results reported. The thermal conductivity and diffusivity of HCRI BIPV module are less than that of Si-based BIPV. The HCRI-BIPV module appeared to be effective in improving the visible transmittance and reducing the absorptance, but the value of SC of HCRI-BIPV module was higher than that of Si-based BIPV. This indicates that there is still a trade-off between day lighting and thermal insulation for designing an optimal BIPV module. Further thermal performance work conducted by a small-sized hot-box with a solar simulator lamp revealed that heat is mostly absorbed by the HCRI-BIPV and a small amount of heat is conducted into building. The surface temperature on both sides of Si-based BIPV reached a steady state is faster than that of HCRI-BIPV due to the higher thermal diffusivity. This can have important practical implications on the fabrication of low-cost, high visible light transmittance of BIPV module.


1997 ◽  
Vol 503 ◽  
Author(s):  
B. K. Diefenderfer ◽  
I. L. Al-Qadi ◽  
J. J. Yoho ◽  
S. M. Riad ◽  
A. Loulizi

ABSTRACTPortland cement concrete (PCC) structures deteriorate with age and need to be maintained or replaced. Early detection of deterioration in PCC (e.g., alkali-silica reaction, freeze/thaw damage, or chloride presence) can lead to significant reductions in maintenance costs. However, it is often too late to perform low-cost preventative maintenance by the time deterioration becomes evident. By developing techniques that would enable civil engineers to evaluate PCC structures and detect deterioration at early stages (without causing further damage), optimization of life-cycle costs of the constructed facility and minimization of disturbance to the facility users can be achieved.Nondestructive evaluation (NDE) methods are potentially one of the most useful techniques ever developed for assessing constructed facilities. They are noninvasive and can be performed rapidly. Portland cement concrete can be nondestructively evaluated by electrically characterizing its complex dielectric constant. The real part of the dielectric constant depicts the velocity of electromagnetic waves in PCC. The imaginary part, termed the “loss factor,” describes the conductivity of PCC and the attenuation of electromagnetic waves.Dielectric properties of PCC have been investigated in a laboratory setting using a parallel plate capacitor operating in the frequency range of 0.1 to 40.1MIHz. This capacitor set-up consists of two horizontal-parallel plates with an adjustable separation for insertion of a dielectric specimen (PCC). While useful in research, this approach is not practical for field implementation. A new capacitor probe has been developed which consists of two plates, located within the same horizontal plane, for placement upon the specimen to be tested. Preliminary results show that this technique is feasible and results are promising; further testing and evaluation is currently underway.


2018 ◽  
Author(s):  
Zeyu Wang ◽  
Yanhua Diao ◽  
Yaohua Zhao ◽  
Chuanqi Chen ◽  
Lin Liang ◽  
...  

Author(s):  
Yalong Zou ◽  
Jiabo Le ◽  
Yufeng Cao ◽  
Na An ◽  
Yang Zhou ◽  
...  

The attractive photoelectrochemical (PEC) water splitting for hydrogen fuels always desires new semiconductors which provide stronger visible light absorption with suitable band positions. Sn(II) complex oxides are expected to offer...


2021 ◽  
Author(s):  
Xiaojing Zhang ◽  
xinyi Ge ◽  
Zhigang Shen ◽  
Han Ma ◽  
Jingshi Wang ◽  
...  

Compared with environmentally harmful binder polyvinylidene fluoride (PVDF) in Li-ion batteries (LIBs), water-based binders have many advantages, such as low cost, rich sources and environmental friendliness. In this study, various...


Author(s):  
Yanwen Wang ◽  
Rong Liang ◽  
Chao Qin ◽  
Lei Ren ◽  
Zhizhen Ye ◽  
...  

Antimony sulfide (Sb2S3) is a light absorbing material with strong visible light response, which is suitable for efficient and low-cost photoelectrodes. Nano-structured films have unique advantages in constructing photoelectrodes due...


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 821
Author(s):  
Aneeqa Bashir ◽  
Mehwish Farooq ◽  
Abdul Malik ◽  
Shahzad Naseem ◽  
Arshad Saleem Bhatti

An environmentally friendlier solution processing has been introduced to fabricate zirconium oxide (ZrO2) films on quartz substrates, using spin coating of simple water-based solution. The films cured with UV-A = 330 nm for different times (40, 80, 120 min) were investigated for structural and optical properties and compared with thermally annealed film (at 350 °C). XRD and Raman spectroscopy showed amorphous structure in all the samples with no significant phase transformation with UV-A exposure. AFM microscopy showed smooth and crack free films with surface roughness ≤2 nm that reduced with UV-A exposure. Ultraviolet-visible (UV–Vis) spectroscopy demonstrated optical transmittance ≥88% and energy band gap variations as 4.52–4.70 eV. Optical constants were found from spectroscopic ellipsometry (SE). The refractive index (n) values, measured at 470 nm increased from 1.73 to 2.74 as the UV-A exposure prolonged indicating densification and decreasing porosity of the films. The extinction coefficient k decreased from 0.32 to 0.19 indicating reduced optical losses in the films under the UV-A exposure. The photoluminescence (PL) spectra exhibited more pronounced UV emissions which grew intense with UV-A exposure thereby improving the film quality. It is concluded that UV-A irradiation can significantly enhance the optical properties of ZrO2 films with minimal changes induced in the structure as compared to thermally treated film. Moreover, the present work indicates that water-based solution processing has the potential to produce high-quality ZrO2 films for low cost and environmental friendlier technologies. The work also highlights the use of UV-A radiations as an alternate to high temperature thermal annealing for improved quality.


Sign in / Sign up

Export Citation Format

Share Document