Field Testing of a Wind Turbine Tubular Tower and Structural Design of a Space Frame Steel Tower

2013 ◽  
Vol 405-408 ◽  
pp. 1077-1084 ◽  
Author(s):  
Xiang Yang Wang ◽  
Kao Shan Dai ◽  
Yi Chao Huang

Wind energy industry has been growing tremendously in recent years. Tubular steel towers are currently dominant supporting structures for wind turbines. With the increase of the converter capacity, there is a great demand for higher supporting towers. However, structural vibrations in extreme wind events tend to become a major concern during tower design. To study wind turbine tower dynamics, an existing tubular steel tower was tested. Vibrational frequencies and damping ratios were identified. To avoid unexpected dynamic problems, a space frame steel tower has been proposed for supporting larger wind turbines. It is a structural system that can be assembled on-site by using prefabricated beams, columns, and brace members. A typical space frame steel tower was designed in this paper. Static loading, modal and buckling analyses of the tower were presented. It is expected to introduce engineers and designers more options for wind turbine tower design.

Author(s):  
Sandip Kale ◽  
S. N. Sapali

Micro wind turbines installed in various applications, experience average wind speed for most of the time during operations. Power produced by the wind turbine is proportional to the cubic power of the wind velocity and a small increase in wind velocity results increases power output significantly. The approach wind velocity can be increased by covering traditional wind turbine with a diffuser. Researchers are continuously working to develop a compact, lightweight, cost effective and feasible diffuser for wind turbines. The present work carried out to develop a diffuser with these stated objectives. A compact, lightweight inclined flanged diffuser developed for a micro wind turbine. Bare micro wind turbine and wind turbine covered with developed efficient inclined flanged diffuser tested in the field as per International Electrotechnical Commission (IEC) standards and results presented in the form of power curves. The prediction of annual energy production for both wind turbines determined as per IEC standards.


2015 ◽  
Vol 787 ◽  
pp. 217-221 ◽  
Author(s):  
B. Navin Kumar ◽  
K.M. Parammasivam

Wind energy is one of the most significant renewable energy sources in the world. It is the only promising renewable energy resource that only can satisfy the nation’s energy requirements over the growing demand for electricity. Wind turbines have been installed all over the wind potential areas to generate electricity. The wind turbines are designed to operate at a rated wind velocity. When the wind turbines are exposed to extreme wind velocities such as storm or hurricane, the wind turbine rotates at a higher speed that affects the structural stability of the entire system and may topple the system. Mechanical braking systems and Aerodynamic braking systems have been currently used to control the over speeding of the wind turbine at extreme wind velocity. As a novel approach, it is attempted to control the over speeding of the wind turbine by aerodynamic braking system by providing the chord wise spacing (opening). The turbine blade with chord wise spacing alters the pressure distribution over the turbine blade that brings down the rotational speed of the wind turbine within the allowable limit. In this approach, the over speeding of the wind turbine blades are effectively controlled without affecting the power production. In this paper the different parameters of the chord wise spacing such as position of the spacing, shape of the spacing, width of the spacing and impact on power generation are analyzed and the spacing parameters are experimentally optimized.


Author(s):  
Shulong Yao ◽  
D. Todd Griffith ◽  
Mayank Chetan ◽  
Christopher J. Bay ◽  
Rick Damiani ◽  
...  

2015 ◽  
Vol 764-765 ◽  
pp. 457-461 ◽  
Author(s):  
Shyh Kuang Ueng ◽  
Yao Hong Chan

This paper presents a Radar Cross Section (RCS) reduction method for wind turbines. In the proposed method, a reshaping procedure is utilized to generate waves or bumps on the surface of the wind-turbine tower. As the tower is illuminated by electromagnetic waves, the reflected rays are perturbed by the convex structures and the RCS of the wind turbine is decreased. Test results conclude that our modeling method reduces the average RCS values. The scatterings in the directions of the convex structures are significantly declined.


2019 ◽  
Vol 7 (1) ◽  
pp. 58-65
Author(s):  
Vladimirs Vorohobovs ◽  
Andrey Zakharoff

Abstract In this article the necessity of measuring wind at its different heights is discussed. The economical optimization of tower height is impossible without such measurement. In places where land is relatively flat, for example, in deserts or swamps, smaller wind turbines are more profitable, while in forest zones bigger turbines are more profitable. In both cases, to make a correct decision on the optimal tower height, it is very important to know exactly the wind profile law. Even for places where land is expensive, the measurement of the wind at different heights can influence the correct decision regarding the optimal size and number of needed turbines for getting the required power. For places with cheaper land, this dependence is even stronger. This analysis refutes a common misconception: “the bigger – the better”.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3058
Author(s):  
Ali Awada ◽  
Rafic Younes ◽  
Adrian Ilinca

The installation of wind energy increased in the last twenty years, as its cost decreased, and it contributes to reducing GHG emissions. A race toward gigantism characterizes wind turbine development, primarily driven by offshore projects. The larger wind turbines are facing higher loads, and the imperatives of mass reduction make them more flexible. Size increase of wind turbines results in higher structural vibrations that reduce the lifetime of the components (blades, main shaft, bearings, generator, gearbox, etc.) and might lead to failure or destruction. This paper aims to present in detail the problems associated with wind turbine vibration and a thorough literature review of the different mitigation solutions. We explore the advantages, drawbacks, and challenges of the existing vibration control systems for wind turbines. These systems belong to six main categories, according to the physical principles used and how they operate to mitigate the vibrations. This paper offers a multi-criteria analysis of a vast number of systems in different phases of development, going from full-scale testing to prototype stage, experiments, research, and ideas.


Sign in / Sign up

Export Citation Format

Share Document